Show simple item record

dc.contributor.authorWu, C.
dc.contributor.authorWong, O.
dc.contributor.authorRudnick, L.
dc.contributor.authorShabala, S.
dc.contributor.authorAlger, M.
dc.contributor.authorBanfield, J.
dc.contributor.authorOng, C.
dc.contributor.authorWhite, Sarah
dc.contributor.authorGaron, A.
dc.contributor.authorNorris, R.
dc.contributor.authorAndernach, H.
dc.contributor.authorTate, J.
dc.contributor.authorLukic, V.
dc.contributor.authorTang, H.
dc.contributor.authorSchawinski, K.
dc.contributor.authorDiakogiannis, F.
dc.date.accessioned2019-02-19T04:15:03Z
dc.date.available2019-02-19T04:15:03Z
dc.date.created2019-02-19T03:58:28Z
dc.date.issued2019
dc.identifier.citationWu, C. and Wong, O. and Rudnick, L. and Shabala, S. and Alger, M. and Banfield, J. and Ong, C. et al. 2019. Radio Galaxy Zoo: CLARAN - A deep learning classifier for radio morphologies. Monthly Notices of the Royal Astronomical Society. 482 (1): pp. 1211-1230.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/73873
dc.identifier.doi10.1093/mnras/sty2646
dc.description.abstract

The upcoming next-generation large area radio continuum surveys can expect tens of millions of radio sources, rendering the traditional method for radio morphology classification through visual inspection unfeasible.We present CLARAN-Classifying Radio sources Automatically with Neural networks - a proof-of-concept radio source morphology classifier based upon the Faster Region-based Convolutional Neutral Networks method. Specifically, we train and test CLARAN on the FIRST and WISE (Wide-field Infrared Survey Explorer) images from the Radio Galaxy Zoo Data Release 1 catalogue. CLARAN provides end users with automated identification of radio source morphology classifications from a simple input of a radio image and a counterpart infrared image of the same region. CLARAN is the first open-source, endto- end radio source morphology classifier that is capable of locating and associating discrete and extended components of radio sources in a fast (<200 ms per image) and accurate (=90 per cent) fashion. Future work will improve CLARAN's relatively lower success rates in dealing with multisource fields and will enable CLARAN to identify sources on much larger fields without loss in classification accuracy.

dc.publisherOxford University Press
dc.titleRadio Galaxy Zoo: CLARAN - A deep learning classifier for radio morphologies
dc.typeJournal Article
dcterms.source.volume482
dcterms.source.number1
dcterms.source.startPage1211
dcterms.source.endPage1230
dcterms.source.issn0035-8711
dcterms.source.titleMonthly Notices of the Royal Astronomical Society
curtin.note

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2018 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

curtin.departmentCurtin Institute of Radio Astronomy (Physics)
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record