Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Enhanced stability of low temperature processed perovskite solar cells via augmented polaronic intensity of hole transporting layer

    Access Status
    Fulltext not available
    Authors
    Mahmud, M.
    Elumalai, Naveen Kumar
    Upama, M.
    Wang, D.
    Chan, K.
    Wright, M.
    Xu, C.
    Haque, F.
    Uddin, A.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Mahmud, M. and Elumalai, N.K. and Upama, M. and Wang, D. and Chan, K. and Wright, M. and Xu, C. et al. 2016. Enhanced stability of low temperature processed perovskite solar cells via augmented polaronic intensity of hole transporting layer. Physica Status Solidi - Rapid Research Letters. 10 (12): pp. 882-889.
    Source Title
    Physica Status Solidi - Rapid Research Letters
    DOI
    10.1002/pssr.201600315
    URI
    http://hdl.handle.net/20.500.11937/73923
    Collection
    • Curtin Research Publications
    Abstract

    The commercial mass production of perovskite solar cells requires full compatibility with roll‐to‐roll processing with enhanced device stability. In line with this, the present work addresses following issues simultaneously from multiple fronts: (i) low temperature processed (140 °C) ZnO is used as electron transport layer (ETL) for fabricating the mixed organic cation based perovskite solar cells, (ii) the expensive hole transporting layer (HTL) spiro‐OMeTAD is replaced with F4TCNQ doped P3HT and (iii) the fabrication method does not incorporate the dopant TBP which is known to induce degradation processes in perovskite layer. All the devices under study were fabricated in ambient conditions. The F4TCNQ doped P3HT (HTL) based devices exhibits 14 times higher device stability compared to the conventional Li‐TFSI/TBP doped P3HT devices. The underlying mechanism behind the enhanced device lifetime in F4TCNQ doped P3HT (HTL) based devices was investigated via in‐depth electronic, ionic and polaronic characterization. The enhanced polaronic property in F4TCNQ doped P3HT HTL device ascertains its superior hole extraction and electron blocking capability; and consequently higher stability retained even after a month of ageing.

    Related items

    Showing items related by title, author, creator and subject.

    • Augmentation of optoelectronic properties via P3HT doping for low temperature processed perovskite solar cell
      Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Wright, M.; Chan, K.; Xu, C.; Uddin, A. (2018)
      © 2017 IEEE. Methyl Ammonium Lead Halide Perovskite solar have shown immense potential to be a 'Game Changer' in the photovoltaic industry. Major barriers to commercialization of Perovskite solar cells are poor device ...
    • A high performance and low-cost hole transporting layer for efficient and stable perovskite solar cells
      Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Gonçales, V.; Wright, M.; Xu, C.; Haque, F.; Uddin, A. (2017)
      Here we report a small molecule oxidant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) doped, low cost 2′,7′-bis(bis(4-methoxyphenyl)amino)spiro[cyclopenta[2,1-b:3,4-b′]dithiophene-4,9′-fluorene] (FDT) ...
    • Simultaneous enhancement in stability and efficiency of low-temperature processed perovskite solar cells
      Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Wright, M.; Sun, T.; Xu, C.; Haque, F.; Uddin, A. (2016)
      Mixed ion based perovskite solar cells (PSCs) have recently emerged as a promising photoactive material owing to their augmented electronic and light harvesting properties combined with stability enhancing characteristics. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.