Enhanced stability of low temperature processed perovskite solar cells via augmented polaronic intensity of hole transporting layer
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
Collection
Abstract
The commercial mass production of perovskite solar cells requires full compatibility with roll‐to‐roll processing with enhanced device stability. In line with this, the present work addresses following issues simultaneously from multiple fronts: (i) low temperature processed (140 °C) ZnO is used as electron transport layer (ETL) for fabricating the mixed organic cation based perovskite solar cells, (ii) the expensive hole transporting layer (HTL) spiro‐OMeTAD is replaced with F4TCNQ doped P3HT and (iii) the fabrication method does not incorporate the dopant TBP which is known to induce degradation processes in perovskite layer. All the devices under study were fabricated in ambient conditions. The F4TCNQ doped P3HT (HTL) based devices exhibits 14 times higher device stability compared to the conventional Li‐TFSI/TBP doped P3HT devices. The underlying mechanism behind the enhanced device lifetime in F4TCNQ doped P3HT (HTL) based devices was investigated via in‐depth electronic, ionic and polaronic characterization. The enhanced polaronic property in F4TCNQ doped P3HT HTL device ascertains its superior hole extraction and electron blocking capability; and consequently higher stability retained even after a month of ageing.
Related items
Showing items related by title, author, creator and subject.
-
Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Wright, M.; Chan, K.; Xu, C.; Uddin, A. (2018)© 2017 IEEE. Methyl Ammonium Lead Halide Perovskite solar have shown immense potential to be a 'Game Changer' in the photovoltaic industry. Major barriers to commercialization of Perovskite solar cells are poor device ...
-
Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Gonçales, V.; Wright, M.; Xu, C.; Haque, F.; Uddin, A. (2017)Here we report a small molecule oxidant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) doped, low cost 2′,7′-bis(bis(4-methoxyphenyl)amino)spiro[cyclopenta[2,1-b:3,4-b′]dithiophene-4,9′-fluorene] (FDT) ...
-
Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Wright, M.; Sun, T.; Xu, C.; Haque, F.; Uddin, A. (2016)Mixed ion based perovskite solar cells (PSCs) have recently emerged as a promising photoactive material owing to their augmented electronic and light harvesting properties combined with stability enhancing characteristics. ...