Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Augmentation of optoelectronic properties via P3HT doping for low temperature processed perovskite solar cell

    Access Status
    Fulltext not available
    Authors
    Mahmud, M.
    Elumalai, Naveen Kumar
    Upama, M.
    Wang, D.
    Wright, M.
    Chan, K.
    Xu, C.
    Uddin, A.
    Date
    2018
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Mahmud, M. and Elumalai, N.K. and Upama, M. and Wang, D. and Wright, M. and Chan, K. and Xu, C. et al. 2018. Augmentation of optoelectronic properties via P3HT doping for low temperature processed perovskite solar cell, pp. 1-4.
    Source Title
    2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017
    DOI
    10.1109/PVSC.2017.8366356
    ISBN
    9781509056057
    URI
    http://hdl.handle.net/20.500.11937/74808
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 IEEE. Methyl Ammonium Lead Halide Perovskite solar have shown immense potential to be a 'Game Changer' in the photovoltaic industry. Major barriers to commercialization of Perovskite solar cells are poor device stability and high temperature requirement with TiO2 electron transport layer, widely used in efficient Perovskite devices. Apart from severe moisture sensitivity and thermal degradation, Perovskite layer can be decomposed due to the TBP additive incorporation with Li-TFSI dopant in most commonly used hole transport layers like Spiro OMeTAD and P3HT. Nearly 500° C sintering temperature requirement for Titania electron transport layer also impedes the Perovskite manufacturing in roll-to-roll process on flexible substrate which has a stringent processing condition of sub 150° C temperature. In this work, we have introduced F4TCNQ dopant to replace TBP and Li-TFSI in P3HT HTL in a low temperature (<150° C) solgel ZnO ETL processed Methyl Ammonium Lead Triiodide Perovskite solar cell. F4TCNQ doped P3HT HTL devices have shown over two times higher power conversion efficiency compared to pristine P3HT HTL devices. To comprehend the performance enhancement with F4TCNQ dopant in P3HT, we have examined the optical and electronic properties of both the pristine and F4TCNQ doped P3HT devices. Absorbance of Perovskite film lying underneath the undoped and the F4TCNQ doped P3HT film has been investigated to understand superior optical property of F4TCNQ incorporated film. Mott Schottky analysis has been conducted to enunciate the enhanced electronic property with F4TCNQ dopant in P3HT HTL compared to pristine P3HT.

    Related items

    Showing items related by title, author, creator and subject.

    • Enhanced stability of low temperature processed perovskite solar cells via augmented polaronic intensity of hole transporting layer
      Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Chan, K.; Wright, M.; Xu, C.; Haque, F.; Uddin, A. (2016)
      The commercial mass production of perovskite solar cells requires full compatibility with roll‐to‐roll processing with enhanced device stability. In line with this, the present work addresses following issues simultaneously ...
    • Simultaneous enhancement in stability and efficiency of low-temperature processed perovskite solar cells
      Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Wright, M.; Sun, T.; Xu, C.; Haque, F.; Uddin, A. (2016)
      Mixed ion based perovskite solar cells (PSCs) have recently emerged as a promising photoactive material owing to their augmented electronic and light harvesting properties combined with stability enhancing characteristics. ...
    • A high performance and low-cost hole transporting layer for efficient and stable perovskite solar cells
      Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Gonçales, V.; Wright, M.; Xu, C.; Haque, F.; Uddin, A. (2017)
      Here we report a small molecule oxidant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) doped, low cost 2′,7′-bis(bis(4-methoxyphenyl)amino)spiro[cyclopenta[2,1-b:3,4-b′]dithiophene-4,9′-fluorene] (FDT) ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.