Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Influence of pressure and temperature on CO2-nanofluid interfacial tension: Implication for enhanced oil recovery and carbon geosequestration

    Access Status
    Fulltext not available
    Authors
    Al-Anssari, S.
    Arain, Z.
    Barifcani, Ahmed
    Keshavarz, A.
    Ali, M.
    Iglauer, Stefan
    Date
    2019
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Al-Anssari, S. and Arain, Z. and Barifcani, A. and Keshavarz, A. and Ali, M. and Iglauer, S. 2019. Influence of pressure and temperature on CO2-nanofluid interfacial tension: Implication for enhanced oil recovery and carbon geosequestration.
    Source Title
    Society of Petroleum Engineers - Abu Dhabi International Petroleum Exhibition and Conference 2018, ADIPEC 2018
    ISBN
    9781613996324
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/74111
    Collection
    • Curtin Research Publications
    Abstract

    © Copyright 2018, Society of Petroleum Engineers. Nanoparticles (NPs) based techniques have shown great promises in all fields of science and industry. Nanofluid-flooding, as a replacement for water-flooding, has been suggested as an applicable application for enhanced oil recovery (EOR). The subsequent presence of these NPs and its potential aggregations in the porous media; however, can dramatically intensify the complexity of subsequent CO2 storage projects in the depleted hydrocarbon reservoir. Typically, CO2 from major emitters is injected into the low-productivity oil reservoir for storage and incremental oil recovery, as the last EOR stage. In this work, An extensive serious of experiments have been conducted using a high-pressure temperature vessel to apply a wide range of CO2-pressure (0.1 to 20 MPa), temperature (23 to 70 °C), and salinity (0 to 20wt% NaCl) during CO2/ water interfacial tension (IFT) measurements. Moreover, to mimic all potential scenarios several nanofluids at different and NPs load were used. IFT of CO2/nanofluid system was measured using the pendant drop method as it is convenient and flexible technique, particularly at the high-pressure and high-temperature condition. Experimentally, a nanofluid droplet is allowed to hang from one end of a dispensing needle with the presence of CO2 at the desired pressure and temperature. Regardless of the effects of CO2-pressure, temperature, and salt concentration on the IFT of the CO2/nanofluid system, NPs have shown a limited effect on IFT reduction. Remarkably, increased NPs concentration (from 0.01 to 0.05 wt%) can noticeably reduce IFT of the CO2-nanofluid system. However, no further reduction in IFT values was noticed when the NPs load was = 0.05 wt%. Salinity, on the other hand, showed a dramatic impact on IFT and also on the ability of NPs to reduce IFT. Results showed that IFT increases with salinity particularly at relatively low pressures (= 5 MPa). Moreover, increased salinity can eliminate the effect of NPs on IFT. Interestingly, the initial NP size has no influence on the ability of NPs to reduce IFT. Consequently, the potential nanofluid-flooding processes during EOR have no negative effect on the later CO2-geosequestration projects.

    Related items

    Showing items related by title, author, creator and subject.

    • Wettability of nanofluid-modified oil-wet calcite at reservoir conditions
      Al-Anssari, S.; Arif, M.; Wang, Shaobin; Barifcani, Ahmed; Lebedev, M.; Iglauer, Stefan (2018)
      © 2017 Elsevier Ltd Nanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application ...
    • Impact of nanoparticles on the CO2-brine interfacial tension at high pressure and temperature
      Al-Anssari, S.; Barifcani, Ahmed; Keshavarz, A.; Iglauer, Stefan (2018)
      Hypothesis: Nanofluid flooding has been identified as a promising method for enhanced oil recovery (EOR) and improved Carbon geo-sequestration (CGS). However, it is unclear how nanoparticles (NPs) influence the CO2-brine ...
    • Wettability of nano-treated calcite/CO2/brine systems: Implication for enhanced CO2 storage potential
      Al-Anssari, S.; Arif, M.; Wang, Shaobin; Barifcani, Ahmed; Lebedev, Maxim; Iglauer, Stefan (2017)
      Nanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO 2 -storage applications where the CO 2 -wet rocks ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.