Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Adsorbed carbon nanomaterials for surface and interface-engineered stable rubidium multi-cation perovskite solar cells

    Access Status
    Fulltext not available
    Authors
    Mahmud, M.
    Elumalai, Naveen Kumar
    Upama, M.
    Wang, D.
    Zarei, L.
    Gonçales, V.
    Wright, M.
    Xu, C.
    Haque, F.
    Uddin, A.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Mahmud, M. and Elumalai, N.K. and Upama, M. and Wang, D. and Zarei, L. and Gonçales, V. and Wright, M. et al. 2018. Adsorbed carbon nanomaterials for surface and interface-engineered stable rubidium multi-cation perovskite solar cells. Nanoscale. 10 (2): pp. 773-790.
    Source Title
    Nanoscale
    DOI
    10.1039/C7NR06812C
    URI
    http://hdl.handle.net/20.500.11937/74398
    Collection
    • Curtin Research Publications
    Abstract

    The current work reports the simultaneous enhancement in efficiency and stability of low-temperature, solution-processed triple cation based MA0.57FA0.38Rb0.05PbI3 (MA: methyl ammonium, FA: formamidinium, Rb: rubidium) perovskite solar cells (PSCs) by means of adsorbed carbon nanomaterials at the perovskite/electron transporting layer interface. The quantity and quality of the adsorbents are precisely controlled to electronically modify the ETL surface and lower the energy barrier across the interface. Carbon derivatives namely fullerene (C60) and PC71BM ([6,6]-phenyl C71 butyric acid methyl ester) are employed as adsorbents in conjunction with ZnO and together serve as a bilayer electron transporting layer (ETL). The adsorbed fullerene (C60-ZnO, abbreviated as C-ZnO) passivates the interstitial trap-sites of ZnO with interstitial intercalation of oxygen atoms in the ZnO lattice structure. C-ZnO ETL based PSCs demonstrate about a 19% higher average PCE compared to conventional ZnO ETL based devices and a nearly 9% higher average PCE than PC71BM adsorbed-ZnO (P-ZnO) ETL based PSCs. In addition, the interstitial trap-state passivation with a C-ZnO film upshifts the Fermi-level position of the C-ZnO ETL by 130 meV, with reference to the ZnO ETL, which contributes to an enhanced n-type conductivity. The photocurrent hysteresis phenomenon in C-ZnO PSCs is also substantially reduced due to mitigated charge trapping phenomena and concomitant reduction in an electrode polarization process. Another major highlight of this work is that, C-ZnO PSCs demonstrate a superior device stability retaining about 94% of its initial PCE in the course of a month-long, systematic degradation study conducted in our work. The enhanced device stability with C-ZnO PSCs is attributed to their high resistance to aging-induced recombination phenomena and a water-induced perovskite degradation process, due to a lower content of oxygen-related chemisorbed species on the C-ZnO ETL. The intricate mechanisms behind the efficiency and stability enhancement are investigated in detail and explained in the context of enhanced surface and interfacial electronic properties.

    Related items

    Showing items related by title, author, creator and subject.

    • Simultaneous enhancement in stability and efficiency of low-temperature processed perovskite solar cells
      Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Wright, M.; Sun, T.; Xu, C.; Haque, F.; Uddin, A. (2016)
      Mixed ion based perovskite solar cells (PSCs) have recently emerged as a promising photoactive material owing to their augmented electronic and light harvesting properties combined with stability enhancing characteristics. ...
    • Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH3NH3PbI3-Based Perovskite Solar Cell with Efficiency Beyond 21%
      Liu, P.; Chen, Y.; Xiang, H.; Yang, X.; Wang, Wei ; Ran, R.; Zhou, W.; Shao, Zongping (2021)
      Both the film quality and the electronic properties of halide perovskites have significant influences on the photovoltaic performance of perovskite solar cells (PSCs) because both of them are closely related to the charge ...
    • Controlled nucleation assisted restricted volume solvent annealing for stable perovskite solar cells
      Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Haque, F.; Wright, M.; Xu, C.; Uddin, A. (2017)
      Here we report, a controlled primary nucleation aided restricted volume solvent annealing method [NR method, NR stands for nucleation assisted restricted volume solvent annealing (RVSA)] along with mixed organic cation ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.