Trace elements in titanite: A potential tool to constrain polygenetic growth processes and timing
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The petrological information preserved in the trace element signature of titanite is a valuable complement to in situ U/Pb geochronology, and can be used to refine interpretations on the growth of this mineral. We present trace element and U/Pb isotopic compositions of titanite grains in five amphibolite- to granulite-facies samples from the east Albany-Fraser Orogen of Western Australia. Chondrite-normalised rare earth element (REE) abundance patterns discriminate between titanite populations and correlate with backscatter electron (BSE) zonation. In two samples, titanite REE composition correlates with proximity to garnet, and in one sample titanite composition correlates with gneissic compositional banding. The Dy/Yb ratio can be used as a geochemical indicator to link titanite growth to garnet growth. Titanite that crystallised in a garnet-bearing assemblage is HREE-depleted with Dy/Yb > 2, whereas titanite that crystallised in a garnet-free assemblage typically has flat HREE patterns with Dy/Yb < 2. The titanite grains investigated in this study have a wide range of Eu and LREE signatures, with no obvious correlation to mineralogy, lithology, or growth environment. Furthermore, the Th/U ratio is not uniquely diagnostic of metamorphic or magmatic titanite. For the five samples reported here, Eu, LREE and Th/U are useful to discriminate between titanite populations, but not necessarily as growth process indicators. By integrating the REE signatures with U/Pb data, the five new titanite U/Pb ages can be linked to a range of processes: magmatic titanite crystallisation, metamorphic titanite growth, garnet growth, and/or cooling through the closure temperature for Pb diffusion in titanite.
Related items
Showing items related by title, author, creator and subject.
-
Gregory, Courtney; Buick, I.; Hermann, J.; Rubatto, D. (2009)High-pressure amphibolite-facies migmatitic orthogneisses from the Cockburn Shear Zone (CSZ), northern Musgrave Block in central Australia, were formed during the 580-520 Ma intraplate Petermann Orogeny. The shear-zone ...
-
Schmidt, A.; Pourteau, Amaury; Candan, O.; Oberhänsli, R. (2015)© 2015 Elsevier B.V. This study shows Lu-Hf geochronology of zoned garnet crystals contained in mica schists from the southern Menderes Massif, Turkey. Selected samples are four 3-5 cm large garnet megacrysts of which ...
-
Deformation-enhanced recrystallization of titanite drives decoupling between U-Pb and trace elementsGordon, S.M.; Kirkland, Chris ; Reddy, Steven ; Blatchford, H.J.; Whitney, D.L.; Teyssier, C.; Evans, Noreen ; McDonald, B.J. (2021)Titanite is a common accessory mineral that is useful in determining both age (U-Pb isotopes) and pressure-temperature (P–T) conditions (trace-element composition: Zr, rare earth elements (REE)). However, titanite has a ...