Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation

    Access Status
    Fulltext not available
    Authors
    Sun, H.
    He, J.
    Hu, Z.
    Chen, C.
    Zhou, W.
    Shao, Zongping
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Sun, H. and He, J. and Hu, Z. and Chen, C. and Zhou, W. and Shao, Z. 2019. Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation. Electrochimica Acta. 299: pp. 926-932.
    Source Title
    Electrochimica Acta
    DOI
    10.1016/j.electacta.2019.01.067
    ISSN
    0013-4686
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/74652
    Collection
    • Curtin Research Publications
    Abstract

    The oxygen evolution reaction (OER) plays a crucial role in the application of water splitting, which is a highly competitive option for a sustainable energy future. Thus, it is vital to design highly active and durable electrocatalyst for OER. Herein a hybrid with the nominal composition of Ba2Co1.5Mo0.25Nb0.25O6-d (denoted as BC1.5 MN) electrocatalyst consisting of both double perovskite and single perovskite structures is synthesized by a solid-state reaction method. When tested as an electrocatalyst for OER, the BC1.5 MN electrocatalyst requires a current density of 10 mA cm-2 at an overpotential of 400 mV, an onset overpotential of 260 mV, and a Tafel slope of 70 mV dec-1, which are superior to that of precious metal oxide IrO2 catalyst. Chronoamperometric and cyclic voltammetry studies demonstrate that the BC1.5 MN electrocatalyst has outstanding durability in alkaline solution. The synergistic effect between multi-active sites derived from a single/double perovskite hybrid structure results in one of the most active perovskite-based OER electrocatalysts in alkaline solution.

    Related items

    Showing items related by title, author, creator and subject.

    • A highly active and stable La0.5Sr0.5Ni0.4Fe0.6O3-δ perovskite electrocatalyst for oxygen evolution reaction in alkaline media
      Wang, C.; Cheng, Y.; Ianni, E.; Jiang, San Ping; Lin, B. (2017)
      Owing to the slow kinetics of oxygen evolution reaction (OER), developing highly active and stable OER catalysts is of great importance to realize the industrial operation for water electrolysis, reversible fuel cells and ...
    • A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells
      Zhou, W.; Wang, X.; Zhu, Y.; Dai, J.; Zhu, Y.; Shao, Zongping (2018)
      © 2018, Materials Review Magazine. All right reserved. The over-exploitation and over-utilization of fossil fuel resources such as petroleum and coal has aggravated energy and environment problem in the 21st century, and ...
    • SrCo0.9Ti0.1O3−δ As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance
      Su, C.; Wang, W.; Chen, Y.; Yang, G.; Xu, X.; Tadé, M.; Shao, Zongping (2015)
      The development of efficient, inexpensive, and stable electrocatalysts for the oxygen evolution reaction (OER) is critical for many electrochemical energy conversion technologies. The prohibitive price and insufficient ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.