Bridging Real-Time Precise Point Positioning in Natural Hazard Warning Systems during Outages of MADOCA Corrections
Access Status
Date
2017Type
Metadata
Show full item recordCitation
Source Title
Source Conference
Faculty
School
Collection
Abstract
Real-time Precise Point Positioning (RT-PPP) is the primary positioning method used in natural hazard warning systems (NHWS), e.g. for monitoring tsunami and earthquakes. The Japanese Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis (MADOCA) is a promising service that enables RT-PPP. Currently it includes GPS, GLONASS and QZSS orbits and clock corrections in addition to code biases. However, one concern for continuous hazard monitoring by using RT PPP is the severe decline of positioning accuracy if a discontinuity in receiving these corrections occur, for instance due to a temporary user modem failure. In this paper, we present a method that can sustain RT PPP with 3D accuracy less than 20 cm when such a break takes place. For short outages less than 30 minutes we predict MADOCA orbits using a Holt-Winters’ autoregressive model, and for longer outages up to 2 hrs, the most recent International GNSS Service (IGS) ultra-rapid orbits can be used for GPS observations. Moreover, the clock corrections are predicted as a time series using a joint quadratic polynomial and sinusoidal model. The best regression period to estimate the required model parameters is discussed based on autocorrelation analysis of the corrections. The time lengths of the sinusoidal terms are estimated from analysis of the data in the frequency-domain. The prediction model parameters are estimated sequentially using a sliding time window with short intervals to reduce the computational load. Evaluation of the proposed method is performed at a site resembling a NHWS station and positioning accuracy were compared for the cases when using the original corrections and when using the predicted corrections for 1 hr, assuming that within this period the outage can be fixed. The experimental results proved validity of the presented approach where positioning accuracy of 20 cm was maintained during the prediction period.
Related items
Showing items related by title, author, creator and subject.
-
El-Mowafy, Ahmed (2018)Real-time Precise Point Positioning (RT PPP) is a primary positioning method used in natural hazard warning systems (NHWS) such as monitoring tsunami and earthquakes. The method relays on precise orbit and clock corrections ...
-
El-Mowafy, Ahmed (2017)Real-time precise point positioning (RT-PPP) is a popular positioning method for natural hazard warning systems (NHWS) such as for monitoring tsunami and earthquakes. PPP relays on the use of precise orbits and clock ...
-
El-Mowafy, Ahmed; Deo, M.; Kubo, N. (2016)The precise point positioning (PPP) is a popular positioning technique that is dependent on the use of precise orbits and clock corrections. One serious problem for real-time PPP applications such as natural hazard early ...