Show simple item record

dc.contributor.authorDe Gasperin, F.
dc.contributor.authorDijkema, T.J.
dc.contributor.authorDrabent, A.
dc.contributor.authorMevius, M.
dc.contributor.authorRafferty, D.
dc.contributor.authorVan Weeren, R.
dc.contributor.authorBrüggen, M.
dc.contributor.authorCallingham, J.R.
dc.contributor.authorEmig, K.L.
dc.contributor.authorHeald, G.
dc.contributor.authorIntema, Huib
dc.contributor.authorMorabito, L.K.
dc.contributor.authorOffringa, A.R.
dc.contributor.authorOonk, R.
dc.contributor.authorOrrù, E.
dc.contributor.authorRöttgering, H.
dc.contributor.authorSabater, J.
dc.contributor.authorShimwell, T.
dc.contributor.authorShulevski, A.
dc.contributor.authorWilliams, W.
dc.date.accessioned2019-07-22T01:52:09Z
dc.date.available2019-07-22T01:52:09Z
dc.date.issued2019
dc.identifier.citationDe Gasperin, F. and Dijkema, T.J. and Drabent, A. and Mevius, M. and Rafferty, D. and Van Weeren, R. and Brüggen, M. et al. 2019. Systematic effects in LOFAR data: A unified calibration strategy. Astronomy and Astrophysics. 622: ARTN A5.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/76024
dc.identifier.doi10.1051/0004-6361/201833867
dc.description.abstract

Context. New generation low-frequency telescopes are exploring a new parameter space in terms of depth and resolution. The data taken with these interferometers, for example with the LOw Frequency ARray (LOFAR), are often calibrated in a low signal-to-noise ratio regime and the removal of critical systematic effects is challenging. The process requires an understanding of their origin and properties. Aim. In this paper we describe the major systematic effects inherent to next generation low-frequency telescopes, such as LOFAR. With this knowledge, we introduce a data processing pipeline that is able to isolate and correct these systematic effects. The pipeline will be used to calibrate calibrator observations as the first step of a full data reduction process. Methods. We processed two LOFAR observations of the calibrator 3C 196: the first using the Low Band Antenna (LBA) system at 42-66 MHz and the second using the High Band Antenna (HBA) system at 115-189 MHz. Results. We were able to isolate and correct for the effects of clock drift, polarisation misalignment, ionospheric delay, Faraday rotation, ionospheric scintillation, beam shape, and bandpass. The designed calibration strategy produced the deepest image to date at 54 MHz. The image has been used to confirm that the spectral energy distribution of the average radio source population tends to flatten at low frequencies. Conclusions. We prove that LOFAR systematic effects can be described by a relatively small number of parameters. Furthermore, the identification of these parameters is fundamental to reducing the degrees of freedom when the calibration is carried out on fields that are not dominated by a strong calibrator.

dc.languageEnglish
dc.publisherEDP SCIENCES S A
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectAstronomy & Astrophysics
dc.subjectsurveys
dc.subjectcatalogs
dc.subjectradio continuum: general
dc.subjecttechniques: interferometric
dc.subjectUNDERSTANDING RADIO POLARIMETRY
dc.subjectSKY
dc.subjectGALAXY
dc.subjectI.
dc.subjectMAP
dc.titleSystematic effects in LOFAR data: A unified calibration strategy
dc.typeJournal Article
dcterms.source.volume622
dcterms.source.issn0004-6361
dcterms.source.titleAstronomy and Astrophysics
dc.date.updated2019-07-22T01:52:09Z
curtin.note

Reproduced with permission from Astronomy & Astrophysics, © ESO

curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidIntema, Huib [0000-0002-5880-2730]
curtin.contributor.researcheridIntema, Huib [D-1438-2012]
curtin.identifier.article-numberARTN A5
dcterms.source.eissn1432-0746
curtin.contributor.scopusauthoridIntema, Huib [55958431900] [8549469700]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record