Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    3D numerical analysis of loading geometry on soil behavior reinforced with geocell element

    76457.doc (10.97Mb)
    Access Status
    Open access
    Authors
    Keshmiri, N.
    Ghareh, S.
    Kazemian, Sina
    Hosseinian, A.R.
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Keshmiri, N. and Ghareh, S. and Kazemian, S. and Hosseinian, A.R. 2019. 3D numerical analysis of loading geometry on soil behavior reinforced with geocell element. Journal of Testing and Evaluation. 47 (3): pp. 1645-1657.
    Source Title
    Journal of Testing and Evaluation
    DOI
    10.1520/JTE20180194
    ISSN
    0090-3973
    Faculty
    Faculty of Science and Engineering
    School
    School of Civil and Mechanical Engineering
    URI
    http://hdl.handle.net/20.500.11937/76217
    Collection
    • Curtin Research Publications
    Abstract

    Considering the weakness of the soil profile against tensile forces, researchers have been continuously searching to increase the bearing capacity and shear strength and improve its properties. In some projects, the soil reinforcement method has been known as a proper method for soil improvement because of its low cost, easy implementation, and great impact on soil properties. Reinforced soil is a structure composed of two different types of materials, which minimize their weaknesses together: the soil tolerates compressive stresses, and the reinforcement elements tolerate tensile stresses. In this research, the behavior of circle foundation located on a sand bed reinforced with geocell (GC) elements (which was investigated experimentally) was assessed analytically by using the Abaqus finite element software in three-dimensional (3D) mode as well. After assuring that the results of analytical studies were appropriately correlated with the results of laboratory studies, the behavior of the soil reinforced with GC elements under other square foundations was examined by using analytical studies. The results of this study showed a 65 % increase in bearing capacity and 15 % reduction in the settlement of circle foundation if using GC elements to reinforce the soil profile. The aforementioned has been obtained from comparing the results obtained from analytical and laboratory studies, showing proper matching and alignment between them by changing the geometry of the foundation from circle to square in 3D analytic studies. There was a greater effect on the bearing capacity of square foundations when increasing the GC elements (up to 12 %) than on the bearing capacity of circle foundations. To prove the proposed innovation in this research, some of its outputs were applied for improving the soil under an old one-story building with asymmetric settlement instead of reinforced concrete piles. The settlement was stopped within six months after the completion of the soil improvement operation.

    Related items

    Showing items related by title, author, creator and subject.

    • Modelling pile capacity and load-settlement behaviour of piles embedded in sand & mixed soils using artificial intelligence
      Alkroosh, Iyad Salim Jabor (2011)
      This thesis presents the development of numerical models which are intended to be used to predict the bearing capacity and the load-settlement behaviour of pile foundations embedded in sand and mixed soils. Two artificial ...
    • Pullout behaviour of suction embedded plate anchors in clay
      Song, Zhenhe (2008)
      In recent years oil and gas mining has moved into increasingly deeper water in search of undeveloped fields. As water depths approach and exceed 3000 m conventional offshore foundation systems become inefficient and ...
    • Influence of backfill on coal pillar strength and floor bearing capacity in weak floor conditions in the Illinois Basin
      Kostecki, T.; Spearing, Sam (2015)
      This paper discusses the current theoretical design equations associated with foundation design in the Illinois Basin, as well as the benefits of utilizing high density backfill in a numerical model, to improve pillar and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.