Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Modeling of the Hysteresis Phenomena in Finite-Sized Slitlike Nanopores. Revision of the Recent Results by Rigorous Numerical Analysis

    Access Status
    Fulltext not available
    Authors
    Kowalczyk, Poitr
    Kaneko, K.
    Solarz, L.
    Terzyk, A.
    Hideki, T.
    Holyst, R.
    Date
    2005
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kowalczyk, P. and Kaneko, K. and Solarz, L. and Terzyk, A. and Hideki, T. and Holyst, R. 2005. Modeling of the Hysteresis Phenomena in Finite-Sized Slitlike Nanopores. Revision of the Recent Results by Rigorous Numerical Analysis. Langmuir. 21 (14): pp. 6613-6627.
    Source Title
    Langmuir
    DOI
    10.1021/la0501132
    ISSN
    0743-7463
    URI
    http://hdl.handle.net/20.500.11937/7665
    Collection
    • Curtin Research Publications
    Abstract

    The systematic investigation of the hysteresis phenomena in finite-sized slitlike nanopores via the Aranovich-Donohue (AD) lattice density functional theory (LDFT) is presented. The new reliable quantitative modeling of the adsorption and desorption branch of the hysteresis loop, through the formation and movement of the curved meniscus, is formulated. As a result, we find that our proposal, which closely mimics the experimental findings, can reproduce a rounded shape of the desorption branch of the hysteresis loop. On the basis of the exhausted commutations, we proved that the hysteresis loop obtained in the considered finite-sized slitlike geometry is of the H1 type of the IUPAC classification. This fundamental result and the other most important results do not confirm the results of the recent studies of Sangwichien et al., whereas they fully agree with the recent lattice studies due to Monson et al. We recognize that the nature of the hysteresis loops (i.e. position, width, shape, and the multiple steps) mainly depends on the value of the energy of both the adsorbate-adsorbate and adsorbate-adsorbent interactions; however, the first one is critical for the appearance of hysteresis. Thus, for relatively small adsorbate-adsorbate interactions, the adsorption-desorption process is fully reversible in the whole region of the bulk density. Weshow that the strong adsorbate-adsorbent interactions produce (also observed experimentally) multiple steps within hysteresis loops. Contrary to the other studies of the hysteresis phenomena in confined geometry via the LDFT formalism, we constructed both ascending and descending scanning curves, which are known from the experimental observations. Additionally, we consider the problem of the stability of both the obtained adsorption and desorption branches of the computed hysteresis loop in finite-sized slitlike nanopores.

    Related items

    Showing items related by title, author, creator and subject.

    • On the hysteresis of adsorption and desorption of simple gases in open end and closed end pores
      Zeng, Y.; Prasetyo, L.; Tan, S.; Fan, Chunyan; Do, D.; Nicholson, D. (2017)
      This paper presents a comprehensive computer simulation study of the microscopic mechanisms of adsorption and desorption in uniform sized pores. Our specific aim is to elucidate the origin of hysteresis, especially in ...
    • On the hysteresis of argon adsorption in a uniform closed end slit pore
      Fan, Chunyan; Do, D.; Nicholson, D. (2013)
      We present a molecular simulation study of adsorption and desorption in slit mesopores of uniform width with one end closed and explore the effects of pore dimensions (width and length), temperature and surface affinity ...
    • Condensation and Evaporation in Slit-Shaped Pores: Effects of Adsorbate Layer Structure and Temperature
      Zeng, Y.; Fan, Chunyan; Do, D.; Nicholson, D. (2014)
      We have carried out an extensive computer simulation study of the effects of temperature on adsorption and desorption of argon in two slit mesopores; one of which has both ends open to the surroundings, and the other with ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.