Show simple item record

dc.contributor.authorSzilagyi, Petra
dc.contributor.authorWeinrauch, I.
dc.contributor.authorOh, H.
dc.contributor.authorHirscher, M.
dc.contributor.authorJuan-Alcaniz, J.
dc.contributor.authorSerra-Crespo, P.
dc.contributor.authorTrzesniewski, B.
dc.contributor.authorGeerlings, H.
dc.contributor.authorGascon, J.
dc.contributor.authorGrzech, A.
dc.contributor.authorvan de Krol, R.
dc.contributor.authorGeerlings, H.
dc.identifier.citationSzilagyi, P. and Weinrauch, I. and Oh, H. and Hirscher, M. and Juan-Alcaniz, J. and Serra-Crespo, P. and Trzesniewski, B. et al. 2014. Interplay of Linker Functionalization and Hydrogen Adsorption in the Metal–Organic Framework MIL-101. Journal of Physical Chemistry C. 118: pp. 19572-19579.

Functionalization of metal–organic frameworks results in higher hydrogen uptakes owing to stronger hydrogen–host interactions. However, it has not been studied whether a given functional group acts on existing adsorption sites (linker or metal) or introduces new ones. In this work, the effect of two types of functional groups on MIL-101 (Cr) is analyzed. Thermal-desorption spectroscopy reveals that the -Br ligand increases the secondary building unit’s hydrogen affinity, while the -NH2 functional group introduces new hydrogen adsorption sites. In addition, a subsequent introduction of -Br and -NH2 ligands on the linker results in the highest hydrogen-store interaction energy on the cationic nodes. The latter is attributed to a push-and-pull effect of the linkers.

dc.publisherAmerican Chemical Society
dc.titleInterplay of Linker Functionalization and Hydrogen Adsorption in the Metal–Organic Framework MIL-101
dc.typeJournal Article
dcterms.source.titleJournal of Physical Chemistry C
curtin.departmentDepartment of Imaging and Applied Physics
curtin.accessStatusFulltext not available

Files in this item


This item appears in the following Collection(s)

Show simple item record