Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs

    Access Status
    Fulltext not available
    Authors
    Rada, Z.
    Abid, H.
    Shang, J.
    He, Y.
    Webley, P.
    Liu, S.
    Sun, Hongqi
    Wang, S.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Rada, Z. and Abid, H. and Shang, J. and He, Y. and Webley, P. and Liu, S. and Sun, H. et al. 2015. Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs. Fuel. 160: pp. 318-327.
    Source Title
    Fuel
    DOI
    10.1016/j.fuel.2015.07.088
    ISSN
    0016-2361
    School
    School of Chemical and Petroleum Engineering
    URI
    http://hdl.handle.net/20.500.11937/18602
    Collection
    • Curtin Research Publications
    Abstract

    This study examines adsorption of CO2 and CH4 gases and CO2/CH4 selectivity on titanium based MOFs such as MIL-125(Ti), NH2-MIL-125(Ti) and MIX-MIL-125(Ti) at high pressures up to 10 bar. Characterization and structural analysis of the samples were studied using FT-IR, XRD, TGA, SEM and N2 adsorption/desorption. The effects of double linkers in the synthesis process and addition of amino-functionalised linker in the structure on adsorption of CO2 and CH4 have been discussed. It was found that addition of NH2 functional group will increase surface area and micropore volume, but reduce particle size. Meanwhile, both CO2 and CH4 adsorption will also be increased. Using binary linkers, thermal stability of MIX-MIL-125(Ti) will also be improved. NH2-MIL-125(Ti) showed the highest CO2 and CH4 adsorption capacities. The adsorption heats of CO2 on MIL-125(Ti), NH2-MIL-125(Ti) and MIX-MIL-125(Ti) were not changed significantly, while the adsorption heats of CH4 reduced after amino functionalization. The selectivity factor of CO2/CH4 in MIX-MIL-125 was lower than MIL-125 but higher than NH2-MIL-125. Compared with other adsorbents such as other MOFs, zeolite 13X and activated carbon, MIL-125 demonstrated a higher selectivity factor.

    Related items

    Showing items related by title, author, creator and subject.

    • Simultaneous removal process for humic acids and metal ions by adsorption
      Terdkiatburana, Thanet (2007)
      Humic substances are macromolecules that naturally occur in all environments in which vegetation matter are present. In general, humic acid is part of humic substances which form the major fraction of the dissolved organic ...
    • Capture of carbon dioxide in metal organic frameworks
      Abid, Hussein Rasool (2012)
      This scholarly research investigates synthesis of different Zr-MOFs and some of Al- MOFs and studies their charcateristics and applications in capture or separation of carbon dioxide. CO2 is consdered as a main gas in ...
    • Molecular simulation of CO2–CH4 competitive adsorption and induced coal swelling
      Zhang, J.; Liu, K.; Clennell, M.; Dewhurst, D.; Pervukhina, Marina (2015)
      Adsorption isotherms of carbon dioxide (CO2) and methane (CH4) provide crucial information for CO2 sequestration and exploitation of coal seam gas. In this work, we focus on the competitive adsorption behavior of CO2 and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.