Show simple item record

dc.contributor.authorStawski, T.M.
dc.contributor.authorVan Driessche, A.E.S.
dc.contributor.authorBesselink, R.
dc.contributor.authorByrne, Emily
dc.contributor.authorRaiteri, Paolo
dc.contributor.authorGale, Julian
dc.contributor.authorBenning, L.G.
dc.date.accessioned2019-12-02T04:03:46Z
dc.date.available2019-12-02T04:03:46Z
dc.date.issued2019
dc.identifier.citationStawski, T.M. and Van Driessche, A.E.S. and Besselink, R. and Byrne, E.H. and Raiteri, P. and Gale, J.D. and Benning, L.G. 2019. The Structure of CaSO4 Nanorods: The Precursor of Gypsum. Journal of Physical Chemistry C. 123 (37): pp. 23151-23158.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/77065
dc.identifier.doi10.1021/acs.jpcc.9b04268
dc.description.abstract

© 2019 American Chemical Society. Understanding the gypsum (CaSO4·2H2O) formation pathway from aqueous solution has been the subject of intensive research in the past years. This interest stems from the fact that gypsum appears to fall into a broader category of crystalline materials whose formation does not follow classical nucleation and growth theories. The pathways involve transitory precursor cluster species, yet the actual structural properties of such clusters are not very well understood. Here, we show how in situ high-energy X-ray diffraction experiments and molecular dynamics (MD) simulations can be combined to derive the structure of small CaSO4 clusters, which are precursors of crystalline gypsum. We fitted several plausible structures to the derived pair distribution functions and explored their dynamic properties using unbiased MD simulations based on both rigid ion and polarizable force fields. Determination of the structure and (meta)stability of the primary species is important from both a fundamental and applied perspective; for example, this will allow for an improved design of additives for greater control of the nucleation pathway.

dc.languageEnglish
dc.publisherAMER CHEMICAL SOC
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FT130100463
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FL180100087
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.subjectMOLECULAR-DYNAMICS SIMULATIONS
dc.subjectCALCIUM-SULFATE
dc.subjectWATER
dc.subjectCLUSTERS
dc.titleThe Structure of CaSO4 Nanorods: The Precursor of Gypsum
dc.typeJournal Article
dcterms.source.volume123
dcterms.source.number37
dcterms.source.startPage23151
dcterms.source.endPage23158
dcterms.source.issn1932-7447
dcterms.source.titleJournal of Physical Chemistry C
dc.date.updated2019-12-02T04:03:28Z
curtin.note

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society, after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/acs.jpcc.9b04268

curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidRaiteri, Paolo [0000-0003-0692-0505]
curtin.contributor.orcidGale, Julian [0000-0001-9587-9457]
curtin.contributor.researcheridRaiteri, Paolo [E-1465-2011]
dcterms.source.eissn1932-7455
curtin.contributor.scopusauthoridRaiteri, Paolo [6602613407]
curtin.contributor.scopusauthoridGale, Julian [7101993408]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record