V-Splines and Bayes Estimate
Citation
Cao, Z. and Bryant, D. and Parry, M. 2018. V-Splines and Bayes Estimate. arXiv.org. 1803.07645: pp. 1-16.
Source Title
arXiv.org
Faculty
Faculty of Science and Engineering
School
School of Molecular and Life Sciences (MLS)
Collection
Abstract
Smoothing splines can be thought of as the posterior mean of a Gaussian process regression in a certain limit. By constructing a reproducing kernel Hilbert space with an appropriate inner product, the Bayesian form of the V-spline is derived when the penalty term is a fixed constant instead of a function. An extension to the usual generalized cross-validation formula is utilized to find the optimal V-spline parameters.
Related items
Showing items related by title, author, creator and subject.
-
Cao, Zhanglong ; Bryant, David; Molteno, Tim; Fox, Colin; Parry, Matthew (2018)Trajectory reconstruction is the process of inferring the path of a moving object between successive observations. In this paper, we propose a smoothing spline -- which we name the V-spline -- that incorporates position ...
-
Cao, Zhanglong ; Bryant, David; Molteno, Timothy CA; Fox, Colin; Parry, Matthew (2021)Trajectory reconstruction is the process of inferring the path of a moving object between successive observations. In this paper, we propose a smoothing spline—which we name the V-spline—that incorporates position and ...
-
Liu, Xin; Xia, Jianhong (Cecilia); Gunson, J.; Wright, Graeme; Arnold, L. (2014)This study presents two new methods for significant wave height interpolation, and compares the results from them with the cubic spline method for different durations of wave record gaps. Information about wave height is ...