Show simple item record

dc.contributor.authorCao, Zhanglong
dc.contributor.authorBryant, David
dc.contributor.authorParry, Matthew
dc.date.accessioned2020-02-26T05:18:02Z
dc.date.available2020-02-26T05:18:02Z
dc.date.issued2018
dc.identifier.citationCao, Z. and Bryant, D. and Parry, M. 2018. V-Splines and Bayes Estimate. arXiv.org. 1803.07645: pp. 1-16.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/78085
dc.description.abstract

Smoothing splines can be thought of as the posterior mean of a Gaussian process regression in a certain limit. By constructing a reproducing kernel Hilbert space with an appropriate inner product, the Bayesian form of the V-spline is derived when the penalty term is a fixed constant instead of a function. An extension to the usual generalized cross-validation formula is utilized to find the optimal V-spline parameters.

dc.subjectmath.ST
dc.subjectmath.ST
dc.subjectstat.TH
dc.titleV-Splines and Bayes Estimate
dc.typeJournal Article
dcterms.source.volume1803.07645
dcterms.source.startPage1
dcterms.source.endPage16
dcterms.source.titlearXiv.org
dc.date.updated2020-02-26T05:18:00Z
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusFulltext not available
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidCao, Zhanglong [0000-0001-6667-9392]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record