Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
An analytic solution to the multi-target Bayes recursion known as the δ-Generalized Labeled Multi-Bernoulli ( δ-GLMB) filter has been recently proposed by Vo and Vo in [“Labeled Random Finite Sets and Multi-Object Conjugate Priors,” IEEE Trans. Signal Process., vol. 61, no. 13, pp. 3460-3475, 2014]. As a sequel to that paper, the present paper details efficient implementations of the δ-GLMB multi-target tracking filter. Each iteration of this filter involves an update operation and a prediction operation, both of which result in weighted sums of multi-target exponentials with intractably large number of terms. To truncate these sums, the ranked assignment and K-th shortest path algorithms are used in the update and prediction, respectively, to determine the most significant terms without exhaustively computing all of the terms. In addition, using tools derived from the same framework, such as probability hypothesis density filtering, we present inexpensive (relative to the δ-GLMB filter) look-ahead strategies to reduce the number of computations. Characterization of the L1-error in the multi-target density arising from the truncation is presented.
Related items
Showing items related by title, author, creator and subject.
-
Vo, Ba Tuong; Vo, Ba-Ngu (2018)© 2018 ISIF This paper extends the generalized labeled multi-Bernoulli (GLMB) tracking filter to a batch multi-target tracker. In a labeled random finite set formulation, a multi-target tracking filter propagates the ...
-
Mahler, Ronald (2013)This tutorial paper summarizes the motivations, concepts and techniques of finite-set statistics (FISST), a system-level, 'top-down,' direct generalization of ordinary single-sensor, single-target engineering statistics ...
-
Vo, Ba-Ngu; Vo, Ba Tuong; Reuter, S.; Lam, Q.; Dietmayer, K. (2014)Multi-target tracking is intrinsically an NP-hard problem and the complexity of multi-target tracking solutions usually do not scale gracefully with problem size. Multi-target tracking for on-line applications involving ...