Bayesian hidden Markov models in DNA sequence segmentation using R: the case of Simian Vacuolating virus (SV40)
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
Segmentation models aim to partition compositionally heterogeneous domains into homogeneous segments which may be reflective of biological function. Due to the latent nature of the segments a natural approach to segmentation that has gained favour recently uses Bayesian hidden Markov models (HMMs). Concomitantly in the last few decades, the free R programming language has become a dominant tool for computational statistics, visualization and data science. Therefore, this paper aims to fully exploit R to fit a Bayesian HMM for DNA segmentation. The joint posterior distribution of parameters in the model to be considered is derived followed by the algorithms that can be used for estimation. Functions following these algorithms (Gibbs Sampling, Data Augmentation and Label Switching) are then fully implemented in R. The methodology is assessed through extensive simulation studies and then being applied to analyse Simian Vacuolating virus (SV40). It is concluded that: (1) the algorithms and functions in R can correctly estimate sequence segmentation if the HMM structure is assumed; (2) the performance of the model improves with sequence length; (3) R is reasonably fast for short to medium sequence lengths and number of segments and (4) the segmentation of SV40 appears to correspond with the two major transcripts, early and late, that regulate the expression of SV40 genes.
Related items
Showing items related by title, author, creator and subject.
-
Duong, Thi V. T. (2008)Modeling patterns in temporal data has arisen as an important problem in engineering and science. This has led to the popularity of several dynamic models, in particular the renowned hidden Markov model (HMM) [Rabiner, ...
-
Ding, Z.; Li, Jun ; Hao, Hong (2019)Structural damage identification can be considered as an optimization problem, by defining an appropriate objective function relevant to structural parameters to be identified with optimization techniques. This paper ...
-
Zhang, Li (2009)This research aims to address one of the most challenging problems in the field of computer vision and computer graphics, that is, the reconstruction of smooth 3D human motions from monocular video containing unrestricted ...