Show simple item record

dc.contributor.authorBui, Hoa
dc.contributor.authorKhanh, P.D.
dc.contributor.authorTran, T.T.T.
dc.date.accessioned2020-10-04T08:14:08Z
dc.date.available2020-10-04T08:14:08Z
dc.date.issued2019
dc.identifier.citationBui, H.T. and Khanh, P.D. and Tran, T.T.T. 2019. Characterizations of Nonsmooth Robustly Quasiconvex Functions. Journal of Optimization Theory and Applications. 180 (3): pp. 775-786.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/81340
dc.identifier.doi10.1007/s10957-018-1421-3
dc.description.abstract

© 2018, Springer Science+Business Media, LLC, part of Springer Nature. Two criteria for the robust quasiconvexity of lower semicontinuous functions are established in terms of Fréchet subdifferentials in Asplund spaces. The first criterion extends to such spaces a result established by Barron et al. (Discrete Contin Dyn Syst Ser B 17:1693–1706, 2012). The second criterion is totally new even if it is applied to lower semicontinuous functions on finite-dimensional spaces.

dc.publisherSpringer
dc.titleCharacterizations of Nonsmooth Robustly Quasiconvex Functions
dc.typeJournal Article
dcterms.source.volume180
dcterms.source.number3
dcterms.source.startPage775
dcterms.source.endPage786
dcterms.source.issn0022-3239
dcterms.source.titleJournal of Optimization Theory and Applications
dc.date.updated2020-10-04T08:14:08Z
curtin.note

This is a post-peer-review, pre-copyedit version of an article published in Characterizations of Nonsmooth Robustly Quasiconvex Functions. The final authenticated version is available online at: http://doi.org/10.1007/s10957-018-1421-3

curtin.departmentSchool of Electrical Engineering, Computing and Mathematical Sciences (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidBui, Hoa [0000-0002-1698-6383]
dcterms.source.eissn1573-2878
curtin.contributor.scopusauthoridBui, Hoa [57201853363]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record