Was the moon magnetized by impact plasmas?
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
The crusts of the Moon, Mercury, and many meteorite parent bodies are magnetized. Although the magnetizing field is commonly attributed to that of an ancient core dynamo, a longstanding hypothesized alternative is amplification of the interplanetary magnetic field and induced crustal field by plasmas generated by meteoroid impacts. Here, we use magnetohydrodynamic and impact simulations and analytic relationships to demonstrate that although impact plasmas can transiently enhance the field inside the Moon, the resulting fields are at least three orders of magnitude too weak to explain lunar crustal magnetic anomalies. This leaves a core dynamo as the only plausible source of most magnetization on the Moon.
Related items
Showing items related by title, author, creator and subject.
-
Muxworthy, A.; Bland, Phil; Davison, T.; Moore, J.; Collins, G.; Ciesla, F. (2017)© 2017 The Authors. Meteoritics & Planetary Science published by Wiley Periodicals, Inc. on behalf of The Meteoritical Society. We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, ...
-
Lompa, T.; Wünnemann, K.; Wahl, D.; Padovan, S.; Miljkovic, Katarina (2021)Impact basins on the Moon can serve as a benchmark for timing and intensity of the impact flux in the inner solar system. The basin morphology and morphometry depend on impactor size, mass, and velocity as well as the ...
-
Miljkovic, Katarina; Collins, G.; Wieczorek, M.; Johnson, B.; Soderblom, J.; Neumann, G.; Zuber, M. (2016)Impact bombardment during the first billion years after the formation of the Moon produced at least several tens of basins. The Gravity Recovery and Interior Laboratory (GRAIL) mission mapped the gravity field of these ...