A novel hierarchical approach for multispectral palmprint recognition
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Collection
Abstract
Palmprint is one important biometric feature with uniqueness, stability and high distinguishability, and its study has attracted much attention in the past decades. Although many palmprint-based recognition methods have been proposed and successfully applied for identity authentication, most of the previous researches usually only use the images captured in natural light. It is hard, if not impossible, for further improvement of recognition accuracy based on these palmprint images due to limitations of using the natural light. In order to obtain high recognition rate with more discriminative information, we propose to use multispectral palmprint instead of natural light palmprint in this paper, and develop a multispectral palmprint recognition method based on a hierarchical idea. First, we extract the Block Dominant Orientation Code (BDOC) as a rough feature, and the Block-based Histogram of Oriented Gradient (BHOG) as a fine feature. Second, a hierarchical recognition approach is proposed based on these two types of features. Technically, we fuse different features obtained from different bands in the proposed scheme in order to improve the recognition accuracy. Finally, experimental results show that the recognition accuracy of the proposed method is not only superior to previous high-performance methods based on the PolyU palmprint database with the natural light but also it can further improve the state of the art performance achieved by some approaches based on the PolyU multispectral palmprint database.
Related items
Showing items related by title, author, creator and subject.
-
Hong, D.; Liu, Wan-Quan; Wu, X.; Pan, Z.; Su, J. (2016)Palmprint is usually captured with a touchless device. Due to the changes of angle and position of the palm in a capturing process, as well as the defocus of device, it is inevitable to have some distortions in translation, ...
-
Kramer, Annika (2009)Visual perception is our most important sense which enables us to detect and recognise objects even in low detail video scenes. While humans are able to perform such object detection and recognition tasks reliably, most ...
-
Hong, D.; Liu, Wan-Quan; Su, J.; Pan, Z.; Wu, X. (2014)In this paper, we propose a new palmprint recognition system by using the fast Vese-Osher decomposition model to process the blurred palmprint images. First, a Gaussian defocus degradation model (GDDM) is proposed to ...