An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
© 2019 The Royal Society of Chemistry.
Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that they already operate at the required operational temperature and offer greater energy densities than existing technology. Thermal batteries using metal hydrides need to store hydrogen gas released during charging, and so far, practical demonstrations have employed volumetric storage of gas. This practical study utilises a low temperature metal hydride, titanium manganese hydride (TiMn1.5Hx), to store hydrogen gas, whilst magnesium iron hydride (Mg2FeH6) is used as a high temperature thermal battery. The coupled system is able to achieve consistent energy storage and release cycles. With titanium manganese hydride operating at ambient temperature (20 °C), Mg2FeH6 has to operate between ∼350 °C and ∼500 °C to counteract the pressure hysteresis displayed by TiMn1.5 between hydrogen uptake and release. The results attest the high susceptibility of both materials to thermal issues, such as a requirement for large temperature offsets, in order for the battery to achieve full cycling capacity. An energy density of 1488 kJ kg-1 was experimentally attained for 40 g of Mg2FeH6 with a maximum operating temperature around 520 °C.
Related items
Showing items related by title, author, creator and subject.
-
Sofianos, M. Veronica ; Randall, Samuel; Paskevicius, Mark ; Aguey-Zinsou, K.F.; Rowles, Matthew ; Humphries, Terry ; Buckley, Craig (2020)© 2019 CaH2 is a metal hydride with a high energy density that decomposes around 1100 °C at 1 bar of H2 pressure. Due to this high decomposition temperature, it is difficult to utilise this material as a thermal battery ...
-
Sheppard, Drew; Corgnale, C.; Hardy, B.; Motyka, T.; Zidan, R.; Paskevicius, Mark; Buckley, Craig (2014)A simplified techno-economic model has been used as a screening tool to explore the factors that have the largest impact on the costs of using metal hydrides for concentrating solar thermal storage. The installed costs ...
-
Humphries, Terry ; Yang, J.; Mole, R.A.; Paskevicius, Mark ; Bird, Julianne; Rowles, Matthew ; Tortoza, Mariana ; Sofianos, M. Veronica ; Yu, D.; Buckley, Craig (2020)© 2020 American Chemical Society. Metal hydrides continue to vie for attention as materials in multiple technological applications including hydrogen storage media, thermal energy storage (TES) materials, and hydrogen ...