Show simple item record

dc.contributor.authorPoupin, Lucas
dc.contributor.authorHumphries, Terry
dc.contributor.authorPaskevicius, Mark
dc.contributor.authorBuckley, Craig
dc.date.accessioned2020-12-15T07:39:17Z
dc.date.available2020-12-15T07:39:17Z
dc.date.issued2019
dc.identifier.citationPoupin, L. and Humphries, T.D. and Paskevicius, M. and Buckley, C.E. 2019. An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage. Sustainable Energy and Fuels. 4 (1): pp. 285-292.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/82099
dc.identifier.doi10.1039/c9se00538b
dc.description.abstract

© 2019 The Royal Society of Chemistry.

Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that they already operate at the required operational temperature and offer greater energy densities than existing technology. Thermal batteries using metal hydrides need to store hydrogen gas released during charging, and so far, practical demonstrations have employed volumetric storage of gas. This practical study utilises a low temperature metal hydride, titanium manganese hydride (TiMn1.5Hx), to store hydrogen gas, whilst magnesium iron hydride (Mg2FeH6) is used as a high temperature thermal battery. The coupled system is able to achieve consistent energy storage and release cycles. With titanium manganese hydride operating at ambient temperature (20 °C), Mg2FeH6 has to operate between ∼350 °C and ∼500 °C to counteract the pressure hysteresis displayed by TiMn1.5 between hydrogen uptake and release. The results attest the high susceptibility of both materials to thermal issues, such as a requirement for large temperature offsets, in order for the battery to achieve full cycling capacity. An energy density of 1488 kJ kg-1 was experimentally attained for 40 g of Mg2FeH6 with a maximum operating temperature around 520 °C.

dc.languageEnglish
dc.publisherROYAL SOC CHEMISTRY
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LP120101848
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LP150100730
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LE0989180
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LE0775551
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FT160100303
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectEnergy & Fuels
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectMaterials Science
dc.subjectMAGNESIUM
dc.subjectHYDROGEN
dc.subjectFE
dc.subjectSYSTEM
dc.subjectIRON
dc.subjectMG2FEH6
dc.titleAn experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage
dc.typeJournal Article
dcterms.source.volume4
dcterms.source.number1
dcterms.source.startPage285
dcterms.source.endPage292
dcterms.source.issn2398-4902
dcterms.source.titleSustainable Energy and Fuels
dc.date.updated2020-12-15T07:39:16Z
curtin.departmentSchool of Electrical Engineering, Computing and Mathematical Sciences (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidBuckley, Craig [0000-0002-3075-1863]
curtin.contributor.orcidHumphries, Terry [0000-0003-1015-4495]
curtin.contributor.orcidPaskevicius, Mark [0000-0003-2677-3434]
curtin.contributor.orcidPoupin, Lucas [0000-0002-5458-4406]
curtin.contributor.researcheridBuckley, Craig [B-6753-2013]
curtin.contributor.researcheridPaskevicius, Mark [K-1638-2013]
dcterms.source.eissn2398-4902
curtin.contributor.scopusauthoridBuckley, Craig [56412440100] [7202815196]
curtin.contributor.scopusauthoridHumphries, Terry [12798136600]
curtin.contributor.scopusauthoridPaskevicius, Mark [23025599100]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record