Brainstem functional oscillations across the migraine cycle: A longitudinal investigation
Access Status
Authors
Date
2021Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Although the mechanisms responsible for migraine initiation remain unknown, recent evidence shows that brain function is different immediately preceding a migraine. This is consistent with the idea that altered brain function, particularly in brainstem sites, may either trigger a migraine or facilitate a peripheral trigger that activates the brain, resulting in pain. The aim of this longitudinal study is therefore to expand on the above findings, and to determine if brainstem function oscillates over a migraine cycle in individual subjects. We performed resting state functional magnetic resonance imaging in three migraineurs and five controls each weekday for four weeks. We found that although resting activity variability was similar in controls and interictal migraineurs, brainstem variability increased dramatically during the 24-hour period preceding a migraine. This increase occurred in brainstem areas in which orofacial afferents terminate: the spinal trigeminal nucleus and dorsal pons. These increases were characterized by increased power at infra-slow frequencies, principally between 0.03 and 0.06 Hz. Furthermore, these power increases were associated with increased regional homogeneity, a measure of local signal coherence. The results show within-individual alterations in brain activity immediately preceding migraine onset and support the hypothesis that altered regional brainstem function before a migraine attack is involved in underlying migraine neurobiology.
Related items
Showing items related by title, author, creator and subject.
-
Marciszewski, K.K.; Meylakh, N.; Harrington, Flavia ; Mills, E.P.; Macefield, V.G.; Macey, P.M.; Henderson, L.A. (2018)© 2018 the authors. The neural mechanism responsible for migraine remains unclear. While an external trigger has been proposed to initiate a migraine, it has also been proposed that changes in brainstem function are ...
-
Meylakh, N.; Marciszewski, K.K.; Harrington, Flavia ; Macefield, V.G.; Macey, P.M.; Henderson, L.A. (2018)© 2018 Wiley Periodicals, Inc. The neural mechanism responsible for migraine remains unclear. While the role of an external trigger in migraine initiation remains vigorously debated, it is generally assumed that migraineurs ...
-
Marciszewski, K.K.; Meylakh, N.; Di Pietro, Flavia ; Macefield, V.G.; Macey, P.M.; Henderson, L.A. (2019)© 2019 Marciszewski et al. The neural mechanisms responsible for the initiation and expression of migraines remain unknown. Although there is growing evidence of changes in brainstem anatomy and function between attacks, ...