Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Using hyperspectral imaging to determine germination of native Australian plant seeds

    Access Status
    Fulltext not available
    Authors
    Nansen, C.
    Zhao, G.
    Dakin, N.
    Zhao, C.
    Turner, Shane
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Nansen, C. and Zhao, G. and Dakin, N. and Zhao, C. and Turner, S.R. 2015. Using hyperspectral imaging to determine germination of native Australian plant seeds. Journal of Photochemistry and Photobiology B: Biology. 145: pp. 19-24.
    Source Title
    Journal of Photochemistry and Photobiology B: Biology
    DOI
    10.1016/j.jphotobiol.2015.02.015
    ISSN
    1011-1344
    Faculty
    Faculty of Science and Engineering
    School
    School of Molecular and Life Sciences (MLS)
    URI
    http://hdl.handle.net/20.500.11937/88505
    Collection
    • Curtin Research Publications
    Abstract

    We investigated the ability to accurately and non-destructively determine the germination of three native Australian tree species, Acacia cowleana Tate (Fabaceae), Banksia prionotes L.F. (Proteaceae), and Corymbia calophylla (Lindl.) K.D. Hill & L.A.S. Johnson (Myrtaceae) based on hyperspectral imaging data. While similar studies have been conducted on agricultural and horticultural seeds, we are unaware of any published studies involving reflectance-based assessments of the germination of tree seeds. Hyperspectral imaging data (110 narrow spectral bands from 423.6 nm to 878.9 nm) were acquired of individual seeds after 0, 1, 2, 5, 10, 20, 30, and 50 days of standardized rapid ageing. At each time point, seeds were subjected to hyperspectral imaging to obtain reflectance profiles from individual seeds. A standard germination test was performed, and we predicted that loss of germination was associated with a significant change in seed coat reflectance profiles. Forward linear discriminant analysis (LDA) was used to select the 10 spectral bands with the highest contribution to classifications of the three species. In all species, germination decreased from over 90% to below 20% in about 10-30 days of experimental ageing. P50 values (equal to 50% germination) for each species were 19.3 (A. cowleana), 7.0 (B. prionotes) and 22.9 (C. calophylla) days. Based on independent validation of classifications of hyperspectral imaging data, we found that germination of Acacia and Corymbia seeds could be classified with over 85% accuracy, while it was about 80% for Banksia seeds. The selected spectral bands in each LDA-based classification were located near known pigment peaks involved in photosynthesis and/or near spectral bands used in published indices to predict chlorophyll or nitrogen content in leaves. The results suggested that seed germination may be successfully classified (predicted) based on reflectance in narrow spectral bands associated with the primary metabolism function and performance of plants.

    Related items

    Showing items related by title, author, creator and subject.

    • Application of advanced techniques for the remote detection, modelling and spatial analysis of mesquite (prosopis spp.) invasion in Western Australia
      Robinson, Todd Peter (2008)
      Invasive plants pose serious threats to economic, social and environmental interests throughout the world. Developing strategies for their management requires a range of information that is often impractical to collect ...
    • Reducing the dimensionality of hyperspectral remotely sensed data with applications for maximum likelihood image classification
      Santich, Norman Ty (2007)
      As well as the many benefits associated with the evolution of multispectral sensors into hyperspectral sensors there is also a considerable increase in storage space and the computational load to process the data. ...
    • Ecological study of plant species at Sandford Rocks Nature Reserve (SRNR)
      Gaol, Mangadas Lumban (2002)
      The ecology of plant species at Sandford Rocks Nature Reserve (SRNR) was studied. The study site is an important nature reserve that contains relatively undisturbed natural vegetation. It has a mosaic of exposed granite ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.