Show simple item record

dc.contributor.authorJunaidi
dc.contributor.authorNur, Darfiana
dc.contributor.authorHudson, I.
dc.contributor.authorStojanovski, E.
dc.date.accessioned2022-05-20T12:44:32Z
dc.date.available2022-05-20T12:44:32Z
dc.date.issued2020
dc.identifier.citationJunaidi and Nur, D. and Hudson, I. and Stojanovski, E. 2020. Bayesian analysis of meta-analytic models incorporating dependency: new approaches for the hierarchical Bayesian delta-splitting model. Heliyon. 6 (9): Article No. e04835.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/88545
dc.identifier.doi10.1016/j.heliyon.2020.e04835
dc.description.abstract

Dependence between studies in meta-analysis is an assumption which is imposed on the structure of hierarchical Bayesian meta-analytic models. Dependence in meta-analysis can occur as a result of study reports using the same data or from the same authors. In this paper, the hierarchical Bayesian delta-splitting (HBDS) model (Steven and Taylor, 2009), which allows for dependence between studies and sub-studies by introducing dependency at the sampling and hierarchical levels, is developed using Bayesian approaches. Parameter estimation obtained from the joint posterior distributions of all parameters for the HBDS model was conducted using the Metropolis within Gibbs algorithm. The estimation of parameters for simulation studies using R code confirmed the consistency of the model parameters. These parameters were then tested successfully on studies to assess the effects of native-language vocabulary aids on second language reading as a case study.

dc.languageEnglish
dc.publisherELSEVIER SCI LTD
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectScience & Technology
dc.subjectMultidisciplinary Sciences
dc.subjectScience & Technology - Other Topics
dc.subjectMathematics
dc.subjectComputational mathematics
dc.subjectHierarchical Bayesian delta-splitting
dc.subjectDependence meta-analytic
dc.titleBayesian analysis of meta-analytic models incorporating dependency: new approaches for the hierarchical Bayesian delta-splitting model
dc.typeJournal Article
dcterms.source.volume6
dcterms.source.number9
dcterms.source.issn2405-8440
dcterms.source.titleHeliyon
dc.date.updated2022-05-20T12:44:32Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidNur, Darfiana [0000-0002-7690-1097]
curtin.identifier.article-numberARTN e04835
dcterms.source.eissn2405-8440
curtin.contributor.scopusauthoridNur, Darfiana [8921799600]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/