Show simple item record

dc.contributor.authorMardi, K.B.
dc.contributor.authorDixit, A.R.
dc.contributor.authorPramanik, Alokesh
dc.contributor.authorHvizdos, P.
dc.contributor.authorMallick, A.
dc.contributor.authorNag, A.
dc.contributor.authorHloch, S.
dc.date.accessioned2022-07-26T07:38:37Z
dc.date.available2022-07-26T07:38:37Z
dc.date.issued2021
dc.identifier.citationMardi, K.B. and Dixit, A.R. and Pramanik, A. and Hvizdos, P. and Mallick, A. and Nag, A. and Hloch, S. 2021. Surface topography analysis of mg-based composites with different nanoparticle contents disintegrated using abrasive water jet. Materials. 14 (19): ARTN 5471.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/89043
dc.identifier.doi10.3390/ma14195471
dc.description.abstract

This study investigated the effect of abrasive water jet kinematic parameters, such as jet traverse speed and water pressure, on the surface of magnesium-based metal matrix nanocomposites (Mg-MMNCs) reinforced with 50 nm (average particle size) Al2O3 particles at concentrations of 0.66 and 1.11 wt.%. The extent of grooving caused by abrasive particles and irregularities in the abrasive waterjet machined surface with respect to traverse speed (20, 40, 250 and 500 mm/min), abrasive flow rate (200 and 300 g/min) and water pressure (100 and 400 MPa) was investigated using surface topography measurements. The results helped to identify the mode of material disintegration during the process. The nanoindentation results show that material softening was decreased in nanocomposites with higher reinforcement content due to the presence of a sufficient amount of nanoparticles (1.11 wt.%), which protected the surface from damage. The values of selected surface roughness profile parameters—average roughness (Ra), maximum height of peak (Rp) and maximum depth of valleys (Rv)—reveal a comparatively smooth surface finish in composites reinforced with 1.11 wt.% at a traverse speed of 500 mm/min. Moreover, abrasive waterjet machining at high water pressure (400 MPa) produced better surface quality due to sufficient material removal and effective cleaning of debris from the machining zone as compared to a low water pressure (100 MPa), low traverse speed (5 mm/min) and low abrasive mass flow rate (200 g/min).

dc.languageEnglish
dc.publisherMDPI
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectMaterials Science, Multidisciplinary
dc.subjectMetallurgy & Metallurgical Engineering
dc.subjectPhysics, Applied
dc.subjectPhysics, Condensed Matter
dc.subjectChemistry
dc.subjectMaterials Science
dc.subjectPhysics
dc.subjectMg-based nanocomposite
dc.subjectmachinability
dc.subjectAWJ
dc.subjectsurface topography
dc.subjectroughness
dc.subjectnanoindentation
dc.subjectHYDROABRASIVE DISINTEGRATION
dc.subjectMECHANICAL-PROPERTIES
dc.subjectPARAMETERS
dc.subjectEROSION
dc.subjectSIZE
dc.subjectOPTIMIZATION
dc.subjectPERFORMANCE
dc.subjectPREDICTION
dc.subjectROUGHNESS
dc.subjectINTEGRITY
dc.titleSurface topography analysis of mg-based composites with different nanoparticle contents disintegrated using abrasive water jet
dc.typeJournal Article
dcterms.source.volume14
dcterms.source.number19
dcterms.source.issn1996-1944
dcterms.source.titleMaterials
dc.date.updated2022-07-26T07:38:31Z
curtin.departmentSchool of Civil and Mechanical Engineering
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidPramanik, Alokesh [0000-0001-8985-7358]
curtin.contributor.researcheridPramanik, Alokesh [K-6758-2012]
curtin.identifier.article-numberARTN 5471
dcterms.source.eissn1996-1944
curtin.contributor.scopusauthoridPramanik, Alokesh [14058599200]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/