Show simple item record

dc.contributor.authorPadula, Fabrizio
dc.contributor.authorNtogramatzidis, Lorenzo
dc.contributor.authorSchmid, R.
dc.contributor.authorLoxton, Ryan
dc.date.accessioned2022-10-23T23:14:55Z
dc.date.available2022-10-23T23:14:55Z
dc.date.issued2020
dc.identifier.citationPadula, F. and Ntogramatzidis, L. and Schmid, R. and Loxton, R. 2020. Geometric control and disturbance decoupling for fractional systems. SIAM Journal on Control and Optimization. 58 (3): pp. 1403-1428.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/89487
dc.identifier.doi10.1137/19M1261493
dc.description.abstract

We develop a geometric approach for fractional linear time-invariant systems with Caputo-type derivatives. In particular, we generalize the fundamental notions of invariance and controlled invariance to the fractional setting. We then exploit this new geometric framework to address the disturbance decoupling problem via static pseudostate feedback, with and without stability. Our main contribution is a set of necessary and sufficient conditions for the disturbance decoupling problem that are related to the input-output properties of the closed-loop system, and hence they are applicable not just to Caputo-type derivatives but, more broadly, to any type of fractional system. These results show that, while the conditions for guaranteeing the existence of a decoupling pseudostate feedback remain essentially unchanged, the underlying theoretical framework is substantially different, because the fractional derivative is a nonlocal operator and this property plays a major role in the characterization of the evolution of the pseudostate trajectory. In particular, we show that, unlike the integer case, the infinite-dimensional nature of fractional systems means that feedback control is insufficient to maintain the pseudostate trajectory on a controlled invariant subspace, unless the entire past history of the pseudostate has evolved on that subspace. However, feedforward control can achieve this task under certain necessary and sufficient geometric conditions.

dc.languageEnglish
dc.publisherSIAM PUBLICATIONS
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectPhysical Sciences
dc.subjectAutomation & Control Systems
dc.subjectMathematics, Applied
dc.subjectMathematics
dc.subjectcontrolled invariance
dc.subjectdisturbance decoupling
dc.subjectfractional systems
dc.subjectCONTROLLABILITY
dc.subjectOBSERVABILITY
dc.subjectASSIGNMENT
dc.subjectTRANSIENTS
dc.titleGeometric control and disturbance decoupling for fractional systems
dc.typeJournal Article
dcterms.source.volume58
dcterms.source.number3
dcterms.source.startPage1403
dcterms.source.endPage1428
dcterms.source.issn0363-0129
dcterms.source.titleSIAM Journal on Control and Optimization
dc.date.updated2022-10-23T23:14:39Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidPadula, Fabrizio [0000-0002-0013-9526]
curtin.contributor.orcidNtogramatzidis, Lorenzo [0000-0002-7721-3229]
curtin.contributor.orcidLoxton, Ryan [0000-0001-9821-2885]
curtin.contributor.researcheridPadula, Fabrizio [O-7513-2015]
curtin.contributor.researcheridNtogramatzidis, Lorenzo [A-9458-2013]
curtin.contributor.researcheridLoxton, Ryan [F-9383-2014]
dcterms.source.eissn1095-7138
curtin.contributor.scopusauthoridPadula, Fabrizio [56521286600]
curtin.contributor.scopusauthoridNtogramatzidis, Lorenzo [6506950340]
curtin.contributor.scopusauthoridLoxton, Ryan [24438257500]


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record