Show simple item record

dc.contributor.authorBui, Hoa
dc.contributor.authorLoxton, Ryan
dc.contributor.authorMoeini, A.
dc.date.accessioned2022-10-23T23:25:39Z
dc.date.available2022-10-23T23:25:39Z
dc.date.issued2021
dc.identifier.citationBui, H.T. and Loxton, R. and Moeini, A. 2021. A note on the finite convergence of alternating projections. Operations Research Letters. 49 (3): pp. 431-438.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/89492
dc.identifier.doi10.1016/j.orl.2021.04.009
dc.description.abstract

We establish sufficient conditions for finite convergence of the alternating projections method for two non-intersecting and potentially nonconvex sets. Our results are based on a generalization of the concept of intrinsic transversality, which until now has been restricted to sets with nonempty intersection. In the special case of a polyhedron and closed half space, our sufficient conditions define the minimum distance between the two sets that is required for alternating projections to converge in a single iteration.

dc.languageEnglish
dc.publisherELSEVIER
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/IC180100030
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectOperations Research & Management Science
dc.subjectAlternating projections
dc.subjectProximal normal cone
dc.subjectIntrinsic transversality
dc.subjectFinite convergence
dc.subjectPolyhedrons
dc.subjectLINEAR CONVERGENCE
dc.subjectFEASIBILITY
dc.titleA note on the finite convergence of alternating projections
dc.typeJournal Article
dcterms.source.volume49
dcterms.source.number3
dcterms.source.startPage431
dcterms.source.endPage438
dcterms.source.issn0167-6377
dcterms.source.titleOperations Research Letters
dc.date.updated2022-10-23T23:25:35Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidBui, Hoa [0000-0002-1698-6383]
curtin.contributor.orcidLoxton, Ryan [0000-0001-9821-2885]
curtin.contributor.researcheridLoxton, Ryan [F-9383-2014]
dcterms.source.eissn1872-7468
curtin.contributor.scopusauthoridBui, Hoa [57201853363]
curtin.contributor.scopusauthoridLoxton, Ryan [24438257500]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record