Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Impact of Paramagnetic Minerals on NMR-Converted Pore Size Distributions in Permian Carynginia Shales

    Access Status
    Fulltext not available
    Authors
    Yuan, Yujie
    Rezaee, Reza
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Yuan, Y. and Rezaee, R. 2019. Impact of Paramagnetic Minerals on NMR-Converted Pore Size Distributions in Permian Carynginia Shales. Energy and Fuels. 33 (4): pp. 2880-2887.
    Source Title
    Energy and Fuels
    DOI
    10.1021/acs.energyfuels.8b04003
    ISSN
    0887-0624
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/89572
    Collection
    • Curtin Research Publications
    Abstract

    Pore size distribution (PSD) is a fundamental petrophysical parameter for shale formation evaluation. Nuclear magnetic resonance (NMR), performing as a widely acknowledged technique, directly measures transverse relaxation time (T2), which can be converted into PSD via surface relaxivity (SR). Technically, SR is utilized as a constant value in the entire formation, nevertheless, the laboratory calculated SRs revealed that they are likely to vary with mineralogy and can be influenced by Fe-bearing paramagnetic minerals, which could further affect NMR-converted pore structure properties. This study was performed on Permian Carynginia shale samples to compare the NMR-converted PSD with that measured by mercury injection capillary pressure (MICP). The surface relaxivity was calculated from the logarithmic mean T2 value (T2,lm) based on NMR measurement and the surface to volume ratio (SVR) based on low-pressure nitrogen gas adsorption (LP-N2-GA). The results show that Fe-bearing paramagnetic mineral contents are linear positively correlated with SR values, which were calculated to range between 0.08 and 0.32 μm/s in our tested samples. The paramagnetic mineral of higher content expedites the NMR T2 surface relaxation rate, leading to the divergent shifts in NMR- converted PSD curves.

    Related items

    Showing items related by title, author, creator and subject.

    • Capillary trapping quantification in sandstones using NMR relaxometry
      Connolly, P.; Vogt, S.; Iglauer, Stefan; May, E.; Johns, M. (2017)
      © 2017. American Geophysical Union. All Rights Reserved. Capillary trapping of a non-wetting phase arising from two-phase immiscible flow in sedimentary rocks is critical to many geoscience scenarios, including oil and ...
    • An experimental study for carbonate reservoirs on the impact of CO2-EOR on petrophysics and oil recovery
      Khather, M.; Saeedi, Ali; Myers, M.; Verrall, M. (2019)
      The injection of CO2into deep geological structures for the purpose of CO2storage and/or enhanced oil recovery (CO2-EOR) may trigger a series of consecutive chemical reactions (e.g. mineral dissolution and asphaltene ...
    • PGM converter matte mineral characteristics and effects on downstream processing
      Thyse, E.; Akdogan, G.; Mainza, A.; Eksteen, Jacques (2017)
      © 2017 Elsevier B.V. There is little in-depth study on the downstream processing characteristics of granulated PGM-containing converter matte, particularly related to grinding and liberation behavior closely associated ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.