Injection rate estimation to numerically assess CO2 sequestration in depleted gas reservoirs
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
Depleted gas reservoirs are known as geological media for the sequestration of carbon dioxide (CO2). A large amount of studies attempting to estimate the injection rate of CO2 by analytical and numerical modeling but selection of a suitable injection rate based on the effect of the remaining gas has not been fully understood for in depleted gas fields. This study attempts to present a scheme to estimate the injection rate for CO2 sequestration in depleted gas reservoirs which can help to avoid the lengthy simulation time often required. An analytical method was suggested to estimate the favorable steady-state injection rate for three-phase system (CO2-gas-brine). For the sequestration, CO2 was injected at the estimated and overestimated injection rate to evaluate their impacts on the storage injectivity and capacity. The results obtained indicated that the injection rate estimation approach proposed can be a great asset to evaluate the injectivity and the sequestration potential of the depleted gas reservoirs.
Related items
Showing items related by title, author, creator and subject.
-
Al-Abri, Abdullah S. (2011)Perhaps no other single theme offers such potential for the petroleum industry and yet is never fully embraced as enhanced hydrocarbon recovery. Thomas et al. (2009, p. 1) concluded their review article with “it appears ...
-
Chamani, Amin (2013)Underground gas injection has attracted remarkable attention for natural gas storage and carbon dioxide (CO2) geologic sequestration applications. Injection of natural gas into depleted hydrocarbon reservoirs is the most ...
-
Li, R.; Urosevic, Milovan; Dodds, K. (2018)© 1996-2018 Society of Exploration Geophysicists. All rights reserved. During CO2 sequestration, the effective elastic properties of the reservoir change, initially due to displacement of in-situ pore fluid by free CO2. ...