Show simple item record

dc.contributor.authorLiu, Yang
dc.contributor.authorMoshrefi, R.
dc.contributor.authorRickard, William
dc.contributor.authorScanlon, M.D.
dc.contributor.authorStockmann, T.J.
dc.contributor.authorArrigan, Damien
dc.date.accessioned2022-11-03T12:57:36Z
dc.date.available2022-11-03T12:57:36Z
dc.date.issued2022
dc.identifier.citationLiu, Y. and Moshrefi, R. and Rickard, W.D.A. and Scanlon, M.D. and Stockmann, T.J. and Arrigan, D.W.M. 2022. Ion-transfer electrochemistry at arrays of nanoscale interfaces between two immiscible electrolyte solutions arranged in hexagonal format. Journal of Electroanalytical Chemistry. 909: ARTN 116113.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/89590
dc.identifier.doi10.1016/j.jelechem.2022.116113
dc.description.abstract

The electrochemical behaviour of hexagonally arranged nanopore arrays was studied by simple ion transfer across the interface between two immiscible electrolyte solutions (ITIES) formed between water and 1,2-dichloroethane. The hexagonal nanoITIES arrays were supported at nanopores fabricated by focused ion beam milling into 50 nm thick silicon nitride films. Six arrays with different pore centre-to-centre distance (rc) to radius (ra) ratios were prepared. Within these arrays, the diffusion-limited steady-state currents (iss) of tetrapropylammonium cation (TPrA+) ion transfer increased concomitantly with increasing rc/ra ratio, reaching a plateau at rc/ra ≥ 96, which is greater than that previously reported for square-patterned nanoITIES arrays (rc/ra ≥ 56). The diffusion regime and iss associated with simple ion transfer across a nanopore array was also examined using numerical simulations, via COMSOL Multiphysics software, incorporating a 3-dimensional geometry and employing finite element analysis. Simulated linear sweep voltammograms of TPrA+ transfer demonstrated a unique diffusional behaviour dependent on hexagonal nanopore spacing and the rc/ra ratio, analogous to the experimental voltammograms. Overlay of simulated and experimental voltammograms for each rc/ra ratios showed good agreement. These results indicate that a new design criterion is required to achieve independent diffusion at hexagonal nanointerface arrays, in order to maximize nanodevice performance in electrochemical sensor technologies.

dc.languageEnglish
dc.publisherELSEVIER SCIENCE SA
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP130102040
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectChemistry, Analytical
dc.subjectElectrochemistry
dc.subjectChemistry
dc.subjectInterface
dc.subjectITIES
dc.subjectVoltammetry
dc.subjectnanoITIES
dc.subjectArray
dc.subjectSimulation
dc.subjectLINEAR SWEEP VOLTAMMETRY
dc.subjectFINITE-ELEMENT-METHOD
dc.subjectLIQUID INTERFACE
dc.subjectMICROINTERFACE ARRAYS
dc.subjectMICRODISK ELECTRODES
dc.subjectTRANSPORT
dc.subjectSIMULATION
dc.subjectDIFFUSION
dc.subjectMEMBRANES
dc.titleIon-transfer electrochemistry at arrays of nanoscale interfaces between two immiscible electrolyte solutions arranged in hexagonal format
dc.typeJournal Article
dcterms.source.volume909
dcterms.source.issn1572-6657
dcterms.source.titleJournal of Electroanalytical Chemistry
dc.date.updated2022-11-03T12:57:33Z
curtin.departmentJohn de Laeter Centre (JdLC)
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidRickard, William [0000-0002-8118-730X]
curtin.contributor.orcidArrigan, Damien [0000-0002-1053-1273]
curtin.contributor.researcheridRickard, William [E-9963-2013]
curtin.contributor.researcheridArrigan, Damien [A-7440-2010]
curtin.identifier.article-numberARTN 116113
dcterms.source.eissn1873-2569
curtin.contributor.scopusauthoridRickard, William [35171231700]
curtin.contributor.scopusauthoridArrigan, Damien [7004238830]


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/