Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Metamorphic differentiation via enhanced dissolution along high permeability zones

    Access Status
    Open access via publisher
    Authors
    Moore, Jo
    Beinlich, Andreas
    Piazolo, S.
    Austrheim, H.
    Putnis, Andrew
    Date
    2020
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Moore, J. and Beinlich, A. and Piazolo, S. and Austrheim, H. and Putnis, A. 2020. Metamorphic differentiation via enhanced dissolution along high permeability zones. Journal of Petrology. 61 (10): ARTN egaa096.
    Source Title
    Journal of Petrology
    DOI
    10.1093/petrology/egaa096
    ISSN
    0022-3530
    Faculty
    Faculty of Science and Engineering
    School
    School of Earth and Planetary Sciences (EPS)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP160103449
    http://purl.org/au-research/grants/arc/LE130100053
    URI
    http://hdl.handle.net/20.500.11937/90012
    Collection
    • Curtin Research Publications
    Abstract

    Metamorphic differentiation, resulting in segregated mineral bands, is commonly recorded in metamorphic rocks. Despite the ubiquitous nature of compositionally layered metamorphic rocks, the processes that are responsible for metamorphic differentiation receive very little attention. Here, detailed petrography, quantitative mineral chemistry and bulk rock analyses are applied to investigate compositional variations and assemblage microstructure. Furthermore, thermodynamic modelling is applied to provide additional constraints on the P-T-XH2O conditions of assemblage formation and mass transfer. The studied outcrop, located within the Bergen arcs of southwestern Norway, preserves the hydration of anorthositic granulite at amphibolite-facies conditions. The amphibolite-facies hydration is expressed as both a statically hydrated amphibolite and a shear zone lithology, defined by the interlayering of amphibolite with leucocratic domains. Within the granulite, quartz-lined fractures surrounded by amphibolite-facies alteration haloes represent relics of initial fluid infiltration associated with brittle failure. The fracture assemblage (quartz + plagioclase + zoisite + kyanite ± muscovite ± biotite) is identical to that occurring within leucocratic domains of the shear zone. Consequently, the compositional layering of the shear zone lithology is linked to fluid infiltration along localized zones of high permeability that result from fracturing. Mass-balance calculations indicate that quartz-lined fractures and compositional differentiation of the shear zone resulted from mass redistribution internal to the shear zone rather than partial melting or precipitation of minerals from externally derived fluid. The process of internal fractionation within the shear zone is driven by enhanced dissolution along highly permeable fracture planes resulting in the loss of MgO, Fetot and K2O from the leucocratic domains. Elements dissolved in the fluid are then transported and ultimately either precipitated in comparatively impermeable amphibolite domains or removed from the system resulting in an overall mass loss. The mass transfer causing metamorphic differentiation of the shear zone is the result of coupled reaction and diffusion under differential stress. The mechanisms of mass redistribution observed within this shear zone provides further insight into the processes that facilitate mass transfer in the Earth's crust.

    Related items

    Showing items related by title, author, creator and subject.

    • Structural geology and gold mineralisation of the Ora Banda and Zuleika districts, Eastern Goldfields, Western Australia.
      Tripp, Gerard I. (2000)
      Late-Archaean deformation at Ora Banda 69km northwest of Kalgoorlie, Western Australia, resulted in upright folds (D2), ductile shear zones (D3), and a regional-scale brittle-ductile fault network (D4). Early low-angle ...
    • Microstructurally controlled trace element (Zr, U–Pb) concentrations in metamorphic rutile: An example from the amphibolites of the Bergen Arcs
      Moore, Jo ; Beinlich, Andreas ; Porter, Jennifer K.; Talavera Rodriguez, Cristina ; Berndt, J.; Piazolo, S.; Austrheim, H.; Putnis, Andrew (2020)
      As a common constituent of metamorphic assemblages, rutile provides constraints on the timing and conditions of rock transformation at high resolution. However, very little is known about the links between trace element ...
    • Weakening the lower crust: conditions, reactions and deformation
      Tacchetto, Tommaso ; Clark, Chris ; Erickson, Timmons ; Reddy, Steven ; Bhowany, K.; Hand, M. (2022)
      The impact of fluid infiltration on the deformation mechanisms that facilitate the development of lower-crustal ductile shear zones is evaluated through a multiscale structural, geochemical, and thermobaric analysis ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.