Show simple item record

dc.contributor.authorSchaefer, B.
dc.contributor.authorGrice, Kliti
dc.contributor.authorCoolen, Marco
dc.contributor.authorSummons, R.E.
dc.contributor.authorCui, X.
dc.contributor.authorBauersachs, T.
dc.contributor.authorSchwark, Lorenz
dc.contributor.authorBöttcher, M.E.
dc.contributor.authorBralower, T.J.
dc.contributor.authorLyons, S.L.
dc.contributor.authorFreeman, K.H.
dc.contributor.authorCockell, C.S.
dc.contributor.authorGulick, S.P.S.
dc.contributor.authorMorgan, J.V.
dc.contributor.authorWhalen, M.T.
dc.contributor.authorLowery, C.M.
dc.contributor.authorVajda, V.
dc.date.accessioned2023-01-24T06:09:58Z
dc.date.available2023-01-24T06:09:58Z
dc.date.issued2020
dc.identifier.citationSchaefer, B. and Grice, K. and Coolen, M.J.L. and Summons, R.E. and Cui, X. and Bauersachs, T. and Schwark, L. et al. 2020. Microbial life in the nascent Chicxulub crater. Geology 2020; 48 (4): 328–332.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90122
dc.identifier.doi10.1130/G46799.1
dc.description.abstract

The Chicxulub crater was formed by an asteroid impact at ca. 66 Ma. The impact is considered to have contributed to the end-Cretaceous mass extinction and reduced productivity in the world's oceans due to a transient cessation of photosynthesis. Here, biomarker profiles extracted from crater core material reveal exceptional insights into the post-impact upheaval and rapid recovery of microbial life. In the immediate hours to days after the impact, ocean resurge flooded the crater and a subsequent tsunami delivered debris from the surrounding carbonate ramp.  Deposited material, including biomarkers diagnostic for land plants, cyanobacteria, and photosynthetic sulfur bacteria, appears to have been mobilized by wave energy from coastal microbial mats. As that energy subsided, days to months later, blooms of unicellular cyanobacteria were fueled by terrigenous nutrients. Approximately 200 k.y. later, the nutrient supply waned and the basin returned to oligotrophic conditions, as evident from N2-fixing cyanobacteria biomarkers. At 1 m.y. after impact, the abundance of photosynthetic sulfur bacteria supported the development of water-column photic zone euxinia within the crater.

dc.languageEnglish
dc.publisherGEOLOGICAL SOC AMER, INC
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP180100982
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectGeology
dc.subjectMASS EXTINCTION
dc.subjectASTEROID IMPACT
dc.subjectBALTIC SEA
dc.subjectSULFUR
dc.subjectEVENT
dc.subjectGREEN
dc.subjectIDENTIFICATION
dc.subjectGLYCOLIPIDS
dc.subjectBIOMARKERS
dc.subjectMARKERS
dc.titleMicrobial life in the nascent Chicxulub crater
dc.typeJournal Article
dcterms.source.volume48
dcterms.source.number4
dcterms.source.startPage328
dcterms.source.endPage332
dcterms.source.issn0091-7613
dcterms.source.titleGeology
dcterms.source.isbn9789462823044
dc.date.updated2023-01-24T06:09:58Z
curtin.departmentSchool of Earth and Planetary Sciences (EPS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidGrice, Kliti [0000-0003-2136-3508]
curtin.contributor.orcidCoolen, Marco [0000-0002-0417-920X]
curtin.contributor.researcheridGrice, Kliti [L-2455-2016]
curtin.contributor.researcheridCoolen, Marco [B-8263-2015]
dcterms.source.eissn1943-2682
curtin.contributor.scopusauthoridSchwark, Lorenz [7004473576]
curtin.contributor.scopusauthoridGrice, Kliti [7005492625]
curtin.contributor.scopusauthoridCoolen, Marco [6603365440]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/