New Craters on Mars: An Updated Catalog
Access Status
Authors
Date
2022Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
We present a catalog of new impacts on Mars. These craters formed in the last few decades, constrained with repeat orbital imaging. Crater diameters range from 58 m down to <1 m. For each impact, we report whether it formed a single crater or a cluster (58% clusters); albedo features of the blast zone (88% halos; 64% linear rays; 10% arcuate rays; majority dark-toned; 4% light-toned; 14% dual-toned); and exposures of ice (4% definite; 2% possible). We find no trends in the occurrences of clusters with latitude, elevation, or impact size. Albedo features do not depend on atmospheric fragmentation. Halos are more prevalent at lower elevations, indicating an atmospheric pressure dependence; and around smaller impacts, which could be an observational bias. Linear rays are more likely to form from larger impacts into more consolidated material and may be enhanced by lower atmospheric pressure at higher elevations. Light- and dual-toned blast zones occur in specific regions and more commonly around larger impacts, indicating excavation of compositionally distinct material. Surfaces covered with bright dust lacking cohesion are favored to form detectable surface features. The slope of the cumulative size frequency distribution for this data set is 2.2 for diameters >8 m (differential slope 2.9), significantly shallower than the slope of new lunar craters. We believe that no systematic biases exist in the Martian data set sufficient to explain the discrepancy. This catalog is complete at the time of writing, although observational biases exist, and new discoveries continue.
Related items
Showing items related by title, author, creator and subject.
-
Lagain, Anthony ; Servis, Konstantinos; Benedix, Gretchen ; Norman, Christopher; Anderson, Seamus; Bland, Philip (2021)Determining when an impact crater formed is a complex and tedious task. However, this knowledge is crucial to understanding the geological history of planetary bodies and, more specifically, gives information on erosion ...
-
Lagain, Anthony ; Benedix-Bland, Gretchen; Bland, Philip; Towner, Martin; Norman, Chris; Paxman, Jonathan; Chai, Kevin; Meka, Shiv; Anderson, Seamus (2019)Counting impact craters on surfaces of terrestrial bodies is currently the only way to estimate the age of a planetary surface and the duration of geological processes occurred in the past. This approach requires a tedious ...
-
Miljkovic, Katarina; Collins, G; Mannick, Sahil; Bland, Philip (2013)Observational data show that in the Near Earth Asteroid (NEA) region 15% of asteroids are binary. However, the observed number of plausible doublet craters is 2–4% on Earth and 2–3% on Mars. This discrepancy between the ...