Determining Fireball Fates Using the α-β Criterion
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
As fireball networks grow, the number of events observed becomes unfeasible to manage by manual efforts. Reducing and analyzing big data requires automated data pipelines. Triangulation of a fireball trajectory can swiftly provide information on positions and, with timing information, velocities. However, extending this pipeline to determine the terminal mass estimate of a meteoroid is a complex next step. Established methods typically require assumptions to be made of the physical meteoroid characteristics (such as shape and bulk density). To determine which meteoroids may have survived entry there are empirical criteria that use a fireball's final height and velocity - low and slow final parameters are likely the best candidates. We review the more elegant approach of the dimensionless coefficient method. Two parameters, α (ballistic coefficient) and β (mass loss), can be calculated for any event with some degree of deceleration, given only velocity and height information. α and β can be used to analytically describe a trajectory with the advantage that they are not mere fitting coefficients; they also represent the physical meteoroid properties. This approach can be applied to any fireball network as an initial identification of key events and determine on which to concentrate resources for more in-depth analyses. We used a set of 278 events observed by the Desert Fireball Network to show how visualization in an α-β diagram can quickly identify which fireballs are likely meteorite candidates.
Related items
Showing items related by title, author, creator and subject.
-
Sansom, E.; Bland, Phil; Paxman, J.; Towner, Martin (2014)Determining the mass of a meteoroid passing through the Earth's atmosphere is essential to determining potential meteorite fall positions. This is only possible if the characteristics of these meteoroids, such as density ...
-
Sansom, E.; Rutten, M.; Bland, Phil (2017)Fireball observations from camera networks provide position and time information along the trajectory of a meteoroid that is transiting our atmosphere. The complete dynamical state of the meteoroid at each measured time ...
-
Howie, R.; Paxman, J.; Bland, Phil; Towner, Martin; Sansom, E.; Devillepoix, H. (2017)Long-exposure fireball photographs have been used to systematically record meteoroid trajectories, calculate heliocentric orbits, and determine meteorite fall positions since the mid-20th century. Periodic shuttering is ...