Archean geodynamics: Ephemeral supercontinents or long-lived supercratons
Citation
Source Title
DOI
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Many Archean cratons exhibit Paleoproterozoic rifted margins, implying they were pieces of some ancestral landmass(es). The idea that such an ancient continental assembly represents an Archean supercontinent has been proposed but remains to be justified. Starkly contrasting geological records between different clans of cratons have inspired an alternative hypothesis where cratons were clustered in multiple, separate “supercratons.” A new ca. 2.62 Ga paleomagnetic pole from the Yilgarn craton of Australia is compatible with either two successive but ephemeral supercontinents or two long-lived supercratons across the Archean-Proterozoic transition. Neither interpretation supports the existence of a single, long-lived supercontinent, suggesting that Archean geodynamics were fundamentally different from subsequent times (Proterozoic to present), which were influenced largely by supercontinent cycles.
Related items
Showing items related by title, author, creator and subject.
-
Spaggiari, C.; Kirkland, Chris; Smithies, R.; Wingate, M.; Belousova, E. (2015)The Albany–Fraser Orogen is a well-preserved example of Proterozoic modification of an Archean craton margin. The formation of two successive basin systems accompanied by magmatism along the southern and southeastern ...
-
Barley, M.; Bekker, A.; Krapez, Bryan (2005)Analysis of the tectonostratigraphic records of Late Archean to Early Paleoproterozoic terranes indicates linkage between global tectonics, changing sea levels and environmental conditions. A Late Archean tectonic cycle ...
-
He, J.; Zhu, W.; Ge, Rongfeng; Zheng, B.; Wu, H. (2014)The northern margin of the Tarim Craton plays a pivotal role in understanding the crustal evolution and supercontinent reconstruction of the Tarim Craton. Here we integrate LA-ICP-MS U-Pb ages and Hf isotopic data for ...