New Undisputed Evidence and Strategy for Enhanced Lattice-Oxygen Participation of Perovskite Electrocatalyst through Cation Deficiency Manipulation
Access Status
Authors
Date
2022Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Oxygen evolution reaction (OER) is a key half-reaction in many electrochemical transformations, and efficient electrocatalysts are critical to improve its kinetics which is typically sluggish due to its multielectron-transfer nature. Perovskite oxides are a popular category of OER catalysts, while their activity remains insufficient under the conventional adsorbate evolution reaction scheme where scaling relations limit activity enhancement. The lattice oxygen-mediated mechanism (LOM) has been recently reported to overcome such scaling relations and boost the OER catalysis over several doped perovskite catalysts. However, direct evidence supporting the LOM participation is still very little because the doping strategy applied would introduce additional active sites that may mask the real reaction mechanism. Herein, a dopant-free, cation deficiency manipulation strategy to tailor the bulk diffusion properties of perovskites without affecting their surface properties is reported, providing a perfect platform for studying the contribution of LOM to OER catalysis. Further optimizing the A-site deficiency achieves a perovskite candidate with excellent intrinsic OER activity, which also demonstrates outstanding performance in rechargeable Zn–air batteries and water electrolyzers. These findings not only corroborate the key role of LOM in OER electrocatalysis, but also provide an effective way for the rational design of better catalyst materials for clean energy technologies.
Related items
Showing items related by title, author, creator and subject.
-
High-Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface EngineeringXu, Xiaomin ; Pan, Y.; Ge, L.; Chen, Y.; Mao, X.; Guan, D.; Li, M.; Zhong, Yijun ; Hu, Z.; Peterson, V.K.; Saunders, M.; Chen, C.T.; Zhang, H.; Ran, R.; Du, A.; Wang, H.; Jiang, S.P.; Zhou, W.; Shao, Zongping (2021)Single-phase perovskite oxides that contain nonprecious metals have long been pursued as candidates for catalyzing the oxygen evolution reaction, but their catalytic activity cannot meet the requirements for practical ...
-
Su, Chao ; Wang, Wei ; Shao, Zongping (2021)Conspectus Clean energy conversion technologies can power progress for achieving a sustainable future, while functional materials lie at the core of these technologies. In particular, highly efficient electrocatalysts ...
-
Zhu, Y.; Zhou, W.; Shao, Zongping (2017)Oxygen electrocatalysis, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), plays an extremely important role in oxygen-based renewable-energy technologies such as rechargeable metal-air batteries, ...