Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    An Intrinsically Conductive Phosphorus-Doped Perovskite Oxide as a New Cathode for High-Performance Dye-Sensitized Solar Cells by Providing Internal Conducting Pathways

    Access Status
    Open access via publisher
    Authors
    Xu, M.
    Wang, Wei
    Liu, Y.
    Zhong, Yijun
    Xu, Xiaomin
    Sun, Y.
    Wang, J.
    Zhou, W.
    Shao, Zongping
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Xu, M. and Wang, W. and Liu, Y. and Zhong, Y. and Xu, X. and Sun, Y. and Wang, J. et al. 2019. An Intrinsically Conductive Phosphorus-Doped Perovskite Oxide as a New Cathode for High-Performance Dye-Sensitized Solar Cells by Providing Internal Conducting Pathways. Solar RRL. 3 (8): ARTN 1900108.
    Source Title
    Solar RRL
    DOI
    10.1002/solr.201900108
    Additional URLs
    https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/solr.201900108
    ISSN
    2367-198X
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150104365
    http://purl.org/au-research/grants/arc/DP160104835
    URI
    http://hdl.handle.net/20.500.11937/90617
    Collection
    • Curtin Research Publications
    Abstract

    State-of-the-art dye-sensitized solar cells (DSSCs) usually use the noble and scarce platinum (Pt) cathode, which strongly limits the practical applications of DSSCs. Accordingly, low-cost, highly active, and stable alternatives to Pt are highly desired. Herein, an intrinsically conductive perovskite oxide is reported as a new cathode for DSSCs using a simple nonmetal element doping strategy. The phosphorus-doped perovskite oxide (SrCo0.95P0.05O3−δ [SCP]) shows superior activity/durability for the triiodide (I3−) reduction reaction (IRR) and structural stability relative to the parent compound (SrCoO3−δ [SC]) due to the greatly enhanced electrical conductivity and the stabilization of the perovskite structure. The internal conducting pathways are demonstrated to be very important to obtain high IRR activity of the perovskite cathode, even when the cathode is incorporated with conductive multiwalled carbon nanotubes (MWCNTs). The DSSC with the N719 dye and SCP/MWCNTs cathode displays a superior power conversion efficiency (PCE) of 10.1% to those with Pt (8.11%) and SC/MWCNTs (6.80%) cathodes. In addition, the DSSC with the C101 dye and SCP/MWCNTs cathode shows an attractive PCE of 12.2% with an enhancement of 23%, as compared with the Pt cathode, suggesting that the SCP/MWCNTs composite can be one of the best substitutions to the Pt cathode, which can benefit the future industrialization of DSSCs.

    Related items

    Showing items related by title, author, creator and subject.

    • Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells
      Li, Meng; Chen, Kongfa; Hua, B.; Luo, J.; Rickard, William; Li, J.; Irvine, J.; Jiang, San Ping (2016)
      Cobaltite-based double perovskite oxides with high electrocatalytic activity and conductivity have been developed as high-performance cathode alternatives for solid oxide fuel cells (SOFCs). However, the use of cobaltite-based ...
    • A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells
      Zhou, W.; Wang, X.; Zhu, Y.; Dai, J.; Zhu, Y.; Shao, Zongping (2018)
      © 2018, Materials Review Magazine. All right reserved. The over-exploitation and over-utilization of fossil fuel resources such as petroleum and coal has aggravated energy and environment problem in the 21st century, and ...
    • Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-δ oxide as a promising electrode for proton-conducting solid oxide fuel cells
      Zhang, Y.; Zhu, A.; Guo, Y.; Wang, C.; Ni, M.; Yu, H.; Zhang, C.; Shao, Zongping (2019)
      Proton conducting solid oxide fuel cells are solid state electrochemical devices for power generation at a conversion efficiency (>60%) higher than conventional thermal power plants (~40%). The cathode is the key component ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.