Show simple item record

dc.contributor.authorPan, Yangli
dc.contributor.authorXu, Xiaomin
dc.contributor.authorZhong, Yijun
dc.contributor.authorGe, L.
dc.contributor.authorChen, Y.
dc.contributor.authorVeder, Jean-Pierre
dc.contributor.authorGuan, D.
dc.contributor.authorO’Hayre, R.
dc.contributor.authorLi, M.
dc.contributor.authorWang, G.
dc.contributor.authorWang, H.
dc.contributor.authorZhou, W.
dc.contributor.authorShao, Zongping
dc.date.accessioned2023-03-09T07:56:08Z
dc.date.available2023-03-09T07:56:08Z
dc.date.issued2020
dc.identifier.citationPan, Y. and Xu, X. and Zhong, Y. and Ge, L. and Chen, Y. and Veder, J.P.M. and Guan, D. et al. 2020. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nature Communications. 11 (1): ARTN 2002.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90780
dc.identifier.doi10.1038/s41467-020-15873-x
dc.description.abstract

The development of oxygen evolution reaction (OER) electrocatalysts remains a major challenge that requires significant advances in both mechanistic understanding and material design. Recent studies show that oxygen from the perovskite oxide lattice could participate in the OER via a lattice oxygen-mediated mechanism, providing possibilities for the development of alternative electrocatalysts that could overcome the scaling relations-induced limitations found in conventional catalysts utilizing the adsorbate evolution mechanism. Here we distinguish the extent to which the participation of lattice oxygen can contribute to the OER through the rational design of a model system of silicon-incorporated strontium cobaltite perovskite electrocatalysts with similar surface transition metal properties yet different oxygen diffusion rates. The as-derived silicon-incorporated perovskite exhibits a 12.8-fold increase in oxygen diffusivity, which matches well with the 10-fold improvement of intrinsic OER activity, suggesting that the observed activity increase is dominantly a result of the enhanced lattice oxygen participation.

dc.languageEnglish
dc.publisherNATURE PUBLISHING GROUP
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP150104365
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP160104835
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & Technology
dc.subjectMultidisciplinary Sciences
dc.subjectScience & Technology - Other Topics
dc.subjectION DIFFUSION-COEFFICIENTS
dc.subjectOXIDE CATALYSTS
dc.subjectELECTROCATALYSIS
dc.subjectSURFACE
dc.subjectWATER
dc.subjectREDUCTION
dc.subjectCONDUCTIVITY
dc.subjectPERFORMANCE
dc.subjectSTABILITY
dc.subjectKINETICS
dc.titleDirect evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation
dc.typeJournal Article
dcterms.source.volume11
dcterms.source.number1
dcterms.source.issn2041-1723
dcterms.source.titleNature Communications
dc.date.updated2023-03-09T07:56:08Z
curtin.departmentWASM: Minerals, Energy and Chemical Engineering
curtin.departmentJohn de Laeter Centre (JdLC)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidShao, Zongping [0000-0002-4538-4218]
curtin.contributor.orcidZhong, Yijun [0000-0003-4112-7115]
curtin.contributor.orcidXu, Xiaomin [0000-0002-0067-3331]
curtin.contributor.researcheridShao, Zongping [B-5250-2013]
curtin.contributor.researcheridZhong, Yijun [H-1647-2013]
curtin.contributor.researcheridXu, Xiaomin [E-5439-2014]
curtin.identifier.article-numberARTN 2002
dcterms.source.eissn2041-1723
curtin.contributor.scopusauthoridShao, Zongping [55904502000] [57200900274]
curtin.contributor.scopusauthoridVeder, Jean-Pierre [23092202000]
curtin.contributor.scopusauthoridXu, Xiaomin [57060970200]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/