A Bayesian Filter for Multi-View 3D Multi-Object Tracking With Occlusion Handling
dc.contributor.author | Ong, Jonah | |
dc.contributor.author | Vo, Ba Tuong | |
dc.contributor.author | Vo, Ba-Ngu | |
dc.contributor.author | Kim, Du Yong | |
dc.contributor.author | Nordholm, Sven | |
dc.date.accessioned | 2023-03-09T08:08:26Z | |
dc.date.available | 2023-03-09T08:08:26Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Ong, J. and Vo, B.T. and Vo, B.N. and Kim, D.Y. and Nordholm, S. 2022. A Bayesian Filter for Multi-View 3D Multi-Object Tracking With Occlusion Handling. IEEE Transactions on Pattern Analysis and Machine Intelligence. 44 (5): pp. 2246-2263. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/90801 | |
dc.identifier.doi | 10.1109/TPAMI.2020.3034435 | |
dc.description.abstract |
This paper proposes an online multi-camera multi-object tracker that only requires monocular detector training, independent of the multi-camera configurations, allowing seamless extension/deletion of cameras without retraining effort. The proposed algorithm has a linear complexity in the total number of detections across the cameras, and hence scales gracefully with the number of cameras. It operates in the 3D world frame, and provides 3D trajectory estimates of the objects. The key innovation is a high fidelity yet tractable 3D occlusion model, amenable to optimal Bayesian multi-view multi-object filtering, which seamlessly integrates, into a single Bayesian recursion, the sub-tasks of track management, state estimation, clutter rejection, and occlusion/misdetection handling. The proposed algorithm is evaluated on the latest WILDTRACKS dataset, and demonstrated to work in very crowded scenes on a new dataset. | |
dc.language | English | |
dc.publisher | IEEE COMPUTER SOC | |
dc.relation.sponsoredby | http://purl.org/au-research/grants/arc/DP170104854 | |
dc.relation.sponsoredby | http://purl.org/au-research/grants/arc/DP160104662 | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Science & Technology | |
dc.subject | Technology | |
dc.subject | Computer Science, Artificial Intelligence | |
dc.subject | Engineering, Electrical & Electronic | |
dc.subject | Computer Science | |
dc.subject | Engineering | |
dc.subject | Three-dimensional displays | |
dc.subject | Cameras | |
dc.subject | Trajectory | |
dc.subject | Bayes methods | |
dc.subject | Detectors | |
dc.subject | Training | |
dc.subject | Visualization | |
dc.subject | Multi-view | |
dc.subject | multi-sensor | |
dc.subject | multi-object visual tracking | |
dc.subject | occlusion handling | |
dc.subject | generalized labeled multi-bernoulli | |
dc.subject | PERFORMANCE EVALUATION | |
dc.subject | MULTITARGET TRACKING | |
dc.subject | VISUAL TRACKING | |
dc.subject | CAMERAS | |
dc.title | A Bayesian Filter for Multi-View 3D Multi-Object Tracking With Occlusion Handling | |
dc.type | Journal Article | |
dcterms.source.volume | 44 | |
dcterms.source.number | 5 | |
dcterms.source.startPage | 2246 | |
dcterms.source.endPage | 2263 | |
dcterms.source.issn | 0162-8828 | |
dcterms.source.title | IEEE Transactions on Pattern Analysis and Machine Intelligence | |
dc.date.updated | 2023-03-09T08:08:26Z | |
curtin.department | School of Elec Eng, Comp and Math Sci (EECMS) | |
curtin.accessStatus | Open access | |
curtin.faculty | Faculty of Science and Engineering | |
curtin.contributor.orcid | Nordholm, Sven [0000-0001-8942-5328] | |
curtin.contributor.orcid | Vo, Ba Tuong [0000-0002-3954-238X] | |
curtin.contributor.orcid | Ong, Jonah [0000-0002-8019-0099] | |
curtin.contributor.orcid | Vo, Ba-Ngu [0000-0003-4202-7722] | |
curtin.contributor.researcherid | Nordholm, Sven [J-5247-2014] | |
dcterms.source.eissn | 1939-3539 | |
curtin.contributor.scopusauthorid | Nordholm, Sven [7005690573] | |
curtin.contributor.scopusauthorid | Vo, Ba Tuong [9846846600] | |
curtin.contributor.scopusauthorid | Kim, Du Yong [57193417073] |