Show simple item record

dc.contributor.authorOng, Jonah
dc.contributor.authorVo, Ba Tuong
dc.contributor.authorVo, Ba-Ngu
dc.contributor.authorKim, Du Yong
dc.contributor.authorNordholm, Sven
dc.date.accessioned2023-03-09T08:08:26Z
dc.date.available2023-03-09T08:08:26Z
dc.date.issued2022
dc.identifier.citationOng, J. and Vo, B.T. and Vo, B.N. and Kim, D.Y. and Nordholm, S. 2022. A Bayesian Filter for Multi-View 3D Multi-Object Tracking With Occlusion Handling. IEEE Transactions on Pattern Analysis and Machine Intelligence. 44 (5): pp. 2246-2263.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90801
dc.identifier.doi10.1109/TPAMI.2020.3034435
dc.description.abstract

This paper proposes an online multi-camera multi-object tracker that only requires monocular detector training, independent of the multi-camera configurations, allowing seamless extension/deletion of cameras without retraining effort. The proposed algorithm has a linear complexity in the total number of detections across the cameras, and hence scales gracefully with the number of cameras. It operates in the 3D world frame, and provides 3D trajectory estimates of the objects. The key innovation is a high fidelity yet tractable 3D occlusion model, amenable to optimal Bayesian multi-view multi-object filtering, which seamlessly integrates, into a single Bayesian recursion, the sub-tasks of track management, state estimation, clutter rejection, and occlusion/misdetection handling. The proposed algorithm is evaluated on the latest WILDTRACKS dataset, and demonstrated to work in very crowded scenes on a new dataset.

dc.languageEnglish
dc.publisherIEEE COMPUTER SOC
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP170104854
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP160104662
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectComputer Science, Artificial Intelligence
dc.subjectEngineering, Electrical & Electronic
dc.subjectComputer Science
dc.subjectEngineering
dc.subjectThree-dimensional displays
dc.subjectCameras
dc.subjectTrajectory
dc.subjectBayes methods
dc.subjectDetectors
dc.subjectTraining
dc.subjectVisualization
dc.subjectMulti-view
dc.subjectmulti-sensor
dc.subjectmulti-object visual tracking
dc.subjectocclusion handling
dc.subjectgeneralized labeled multi-bernoulli
dc.subjectPERFORMANCE EVALUATION
dc.subjectMULTITARGET TRACKING
dc.subjectVISUAL TRACKING
dc.subjectCAMERAS
dc.titleA Bayesian Filter for Multi-View 3D Multi-Object Tracking With Occlusion Handling
dc.typeJournal Article
dcterms.source.volume44
dcterms.source.number5
dcterms.source.startPage2246
dcterms.source.endPage2263
dcterms.source.issn0162-8828
dcterms.source.titleIEEE Transactions on Pattern Analysis and Machine Intelligence
dc.date.updated2023-03-09T08:08:26Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidNordholm, Sven [0000-0001-8942-5328]
curtin.contributor.orcidVo, Ba Tuong [0000-0002-3954-238X]
curtin.contributor.orcidOng, Jonah [0000-0002-8019-0099]
curtin.contributor.orcidVo, Ba-Ngu [0000-0003-4202-7722]
curtin.contributor.researcheridNordholm, Sven [J-5247-2014]
dcterms.source.eissn1939-3539
curtin.contributor.scopusauthoridNordholm, Sven [7005690573]
curtin.contributor.scopusauthoridVo, Ba Tuong [9846846600]
curtin.contributor.scopusauthoridKim, Du Yong [57193417073]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/