Show simple item record

dc.contributor.authorNguyen, Hoa
dc.contributor.authorRezatofighi, H.
dc.contributor.authorVo, B.N.
dc.contributor.authorRanasinghe, D.C.
dc.date.accessioned2023-03-16T03:56:55Z
dc.date.available2023-03-16T03:56:55Z
dc.date.issued2021
dc.identifier.citationNguyen, H.V. and Rezatofighi, H. and Vo, B.N. and Ranasinghe, D.C. 2021. Distributed Multi-Object Tracking under Limited Field of View Sensors. IEEE Transactions on Signal Processing. 69: pp. 5329-5344.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/91029
dc.identifier.doi10.1109/TSP.2021.3103125
dc.description.abstract

We consider the challenging problem of tracking multiple objects using a distributed network of sensors. In the practical setting of nodes with limited field of views (FoVs), computing power and communication resources, we develop a novel distributed multi-object tracking algorithm. To accomplish this, we first formalise the concept of label consistency, determine a sufficient condition to achieve it and develop a novel label consensus approach that reduces label inconsistency caused by objects' movements from one node's limited FoV to another. Second, we develop a distributed multi-object fusion algorithm that fuses local multi-object state estimates instead of local multi-object densities. This algorithm: i) requires significantly less processing time than multi-object density fusion methods; ii) achieves better tracking accuracy by considering Optimal Sub-Pattern Assignment (OSPA) tracking errors over several scans rather than a single scan; iii) is agnostic to local multi-object tracking techniques, and only requires each node to provide a set of estimated tracks. Thus, it is not necessary to assume that the nodes maintain multi-object densities, and hence the fusion outcomes do not modify local multi-object densities. Numerical experiments demonstrate our proposed solution's real-time computational efficiency and accuracy compared to state-of-the-art solutions in challenging scenarios.

dc.languageEnglish
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.relation.urihttp://dx.doi.org/10.1109/TSP.2021.3103125
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP160104662
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectEngineering, Electrical & Electronic
dc.subjectEngineering
dc.subjectSensors
dc.subjectSignal processing algorithms
dc.subjectSensor fusion
dc.subjectTrajectory
dc.subjectBandwidth
dc.subjectAustralia
dc.subjectWireless sensor networks
dc.subjectMulti-sensor multi-object tracking
dc.subjectdistributed multi-object tracking
dc.subjectlabel consistency
dc.subjecttrack consensus
dc.subjectMULTI-BERNOULLI FILTER
dc.subjectRANDOM FINITE SETS
dc.subjectEFFICIENT IMPLEMENTATION
dc.subjectDATA FUSION
dc.subjectASSIGNMENT
dc.subjectALGORITHMS
dc.subjectARCHITECTURES
dc.subjectASSOCIATION
dc.subjectCONSENSUS
dc.subjectAVERAGE
dc.subjectcs.MA
dc.subjectcs.MA
dc.subjectcs.RO
dc.titleDistributed Multi-Object Tracking under Limited Field of View Sensors
dc.typeJournal Article
dcterms.source.volume69
dcterms.source.startPage5329
dcterms.source.endPage5344
dcterms.source.issn1053-587X
dcterms.source.titleIEEE Transactions on Signal Processing
dc.date.updated2023-03-16T03:56:50Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusIn process
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidNguyen, Hoa [0000-0002-6878-5102]
dcterms.source.eissn1941-0476
curtin.repositoryagreementV3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record