Cvar-Based Robust Models For Portfolio Selection
dc.contributor.author | Sun, Y. | |
dc.contributor.author | Aw, E.L.G. | |
dc.contributor.author | Li, Bin | |
dc.contributor.author | Teo, Kok Lay | |
dc.contributor.author | Sun, Jie | |
dc.date.accessioned | 2023-04-16T09:53:45Z | |
dc.date.available | 2023-04-16T09:53:45Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Sun, Y. and Aw, E.L.G. and Li, B. and Teo, K.L. and Sun, J. 2020. Cvar-Based Robust Models For Portfolio Selection. Journal of Industrial and Management Optimization. 16 (4): pp. 1861-1871. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/91432 | |
dc.identifier.doi | 10.3934/jimo.2019032 | |
dc.description.abstract |
This study relaxes the distributional assumption of the return of the risky asset, to arrive at the optimal portfolio. Studies of portfolio selection models have typically assumed that stock returns conform to the normal distribution. The application of robust optimization techniques means that only the historical mean and variance of asset returns are required instead of distributional information. We show that the method results in an optimal portfolio that has comparable return and yet equivalent risk, to one that assumes normality of asset returns. | |
dc.language | English | |
dc.publisher | AMER INST MATHEMATICAL SCIENCES-AIMS | |
dc.subject | Science & Technology | |
dc.subject | Technology | |
dc.subject | Physical Sciences | |
dc.subject | Engineering, Multidisciplinary | |
dc.subject | Operations Research & Management Science | |
dc.subject | Mathematics, Interdisciplinary Applications | |
dc.subject | Engineering | |
dc.subject | Mathematics | |
dc.subject | Portfolio optimization | |
dc.subject | risk measure | |
dc.subject | CVaR | |
dc.subject | distributionally robust optimization | |
dc.subject | conic optimization | |
dc.subject | OPTIMIZATION | |
dc.title | Cvar-Based Robust Models For Portfolio Selection | |
dc.type | Journal Article | |
dcterms.source.volume | 16 | |
dcterms.source.number | 4 | |
dcterms.source.startPage | 1861 | |
dcterms.source.endPage | 1871 | |
dcterms.source.issn | 1547-5816 | |
dcterms.source.title | Journal of Industrial and Management Optimization | |
dc.date.updated | 2023-04-16T09:53:45Z | |
curtin.department | School of Elec Eng, Comp and Math Sci (EECMS) | |
curtin.accessStatus | Open access | |
curtin.faculty | Faculty of Science and Engineering | |
curtin.contributor.orcid | Teo, Kok Lay [0000-0002-5903-7698] | |
curtin.contributor.orcid | Sun, Jie [0000-0001-5611-1672] | |
curtin.contributor.researcherid | Sun, Jie [B-7926-2016] [G-3522-2010] | |
dcterms.source.eissn | 1553-166X | |
curtin.contributor.scopusauthorid | Teo, Kok Lay [56153253000] [57202824194] | |
curtin.contributor.scopusauthorid | Sun, Jie [16312754600] [57190212842] | |
curtin.contributor.scopusauthorid | Li, Bin [57129085200] | |
curtin.contributor.scopusauthorid | Li, Bin [57129085200] | |
curtin.repositoryagreement | V3 |