Show simple item record

dc.contributor.authorSun, Y.
dc.contributor.authorAw, E.L.G.
dc.contributor.authorLi, Bin
dc.contributor.authorTeo, Kok Lay
dc.contributor.authorSun, Jie
dc.date.accessioned2023-04-16T09:53:45Z
dc.date.available2023-04-16T09:53:45Z
dc.date.issued2020
dc.identifier.citationSun, Y. and Aw, E.L.G. and Li, B. and Teo, K.L. and Sun, J. 2020. Cvar-Based Robust Models For Portfolio Selection. Journal of Industrial and Management Optimization. 16 (4): pp. 1861-1871.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/91432
dc.identifier.doi10.3934/jimo.2019032
dc.description.abstract

This study relaxes the distributional assumption of the return of the risky asset, to arrive at the optimal portfolio. Studies of portfolio selection models have typically assumed that stock returns conform to the normal distribution. The application of robust optimization techniques means that only the historical mean and variance of asset returns are required instead of distributional information. We show that the method results in an optimal portfolio that has comparable return and yet equivalent risk, to one that assumes normality of asset returns.

dc.languageEnglish
dc.publisherAMER INST MATHEMATICAL SCIENCES-AIMS
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectPhysical Sciences
dc.subjectEngineering, Multidisciplinary
dc.subjectOperations Research & Management Science
dc.subjectMathematics, Interdisciplinary Applications
dc.subjectEngineering
dc.subjectMathematics
dc.subjectPortfolio optimization
dc.subjectrisk measure
dc.subjectCVaR
dc.subjectdistributionally robust optimization
dc.subjectconic optimization
dc.subjectOPTIMIZATION
dc.titleCvar-Based Robust Models For Portfolio Selection
dc.typeJournal Article
dcterms.source.volume16
dcterms.source.number4
dcterms.source.startPage1861
dcterms.source.endPage1871
dcterms.source.issn1547-5816
dcterms.source.titleJournal of Industrial and Management Optimization
dc.date.updated2023-04-16T09:53:45Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidTeo, Kok Lay [0000-0002-5903-7698]
curtin.contributor.orcidSun, Jie [0000-0001-5611-1672]
curtin.contributor.researcheridSun, Jie [B-7926-2016] [G-3522-2010]
dcterms.source.eissn1553-166X
curtin.contributor.scopusauthoridTeo, Kok Lay [56153253000] [57202824194]
curtin.contributor.scopusauthoridSun, Jie [16312754600] [57190212842]
curtin.contributor.scopusauthoridLi, Bin [57129085200]
curtin.contributor.scopusauthoridLi, Bin [57129085200]
curtin.repositoryagreementV3


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record