Show simple item record

dc.contributor.authorWallis, C.P.
dc.contributor.authorRichman, T.R.
dc.contributor.authorFilipovska, A.
dc.contributor.authorRackham, Oliver
dc.date.accessioned2023-04-18T07:49:31Z
dc.date.available2023-04-18T07:49:31Z
dc.date.issued2018
dc.identifier.citationWallis, C.P. and Richman, T.R. and Filipovska, A. and Rackham, O. 2018. Tighter Ligand Binding Can Compensate for Impaired Stability of an RNA-Binding Protein. ACS Chemical Biology. 13 (6): pp. 1499-1505.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/91509
dc.identifier.doi10.1021/acschembio.8b00424
dc.description.abstract

It has been widely shown that ligand-binding residues, by virtue of their orientation, charge, and solvent exposure, often have a net destabilizing effect on proteins that is offset by stability conferring residues elsewhere in the protein. This structure-function trade-off can constrain possible adaptive evolutionary changes of function and may hamper protein engineering efforts to design proteins with new functions. Here, we present evidence from a large randomized mutant library screen that, in the case of PUF RNA-binding proteins, this structural relationship may be inverted and that active-site mutations that increase protein activity are also able to compensate for impaired stability. We show that certain mutations in RNA-protein binding residues are not necessarily destabilizing and that increased ligand-binding can rescue an insoluble, unstable PUF protein. We hypothesize that these mutations restabilize the protein via thermodynamic coupling of protein folding and RNA binding. ©

dc.languageEnglish
dc.publisherAMER CHEMICAL SOC
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP140104111
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP170103000
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP180101656
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subjectBiochemistry & Molecular Biology
dc.subject23S RIBOSOMAL-RNA
dc.subjectDELETERIOUS MUTATIONS
dc.subjectANTIBIOTIC-RESISTANCE
dc.subjectMODULAR RECOGNITION
dc.subjectFUNCTION TRADEOFFS
dc.subjectSTRUCTURAL BASES
dc.subjectFOLDING ACTIVITY
dc.subjectNUCLEIC-ACIDS
dc.subjectDOMAIN-V
dc.subjectEVOLUTION
dc.subjectCatalytic Domain
dc.subjectHumans
dc.subjectLigands
dc.subjectMutagenesis, Site-Directed
dc.subjectMutation
dc.subjectProtein Binding
dc.subjectProtein Folding
dc.subjectProtein Stability
dc.subjectRNA
dc.subjectRNA-Binding Proteins
dc.subjectHumans
dc.subjectRNA-Binding Proteins
dc.subjectRNA
dc.subjectLigands
dc.subjectMutagenesis, Site-Directed
dc.subjectCatalytic Domain
dc.subjectProtein Binding
dc.subjectProtein Folding
dc.subjectMutation
dc.subjectProtein Stability
dc.titleTighter Ligand Binding Can Compensate for Impaired Stability of an RNA-Binding Protein
dc.typeJournal Article
dcterms.source.volume13
dcterms.source.number6
dcterms.source.startPage1499
dcterms.source.endPage1505
dcterms.source.issn1554-8929
dcterms.source.titleACS Chemical Biology
dc.date.updated2023-04-18T07:49:29Z
curtin.departmentCurtin Medical School
curtin.accessStatusOpen access
curtin.facultyFaculty of Health Sciences
curtin.contributor.orcidRackham, Oliver [0000-0002-5301-9624]
dcterms.source.eissn1554-8937
curtin.repositoryagreementV3


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record