Jet-ISM interactions near the microquasars GRS 1758-258 and 1E 1740.7-2942
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Remarks
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
We present Atacama Large Millimeter/Sub-millimeter Array observations of the candidate jet-ISM interaction zones near the black hole X-ray binaries GRS 1758-258 and 1E 1740.7-2942. Using these data, we map the molecular line emission in the regions, detecting emission from the HCN [J = 1-0], HCO+ [J = 1-0], SiO [J = 2-1], CS [J = 2-1], 13CO [J = 1-0], C18O [J = 1-0], HNCO [J = 40,4-30,3], HNCO [J = 50,5-40,4], and CH3OH [J = 21,1-11,0] molecular transitions. Through examining the morphological, spectral, and kinematic properties of this emission, we identify molecular structures that may trace jet-driven cavities in the gas surrounding these systems. Our results from the GRS 1758-258 region in particular, are consistent with recent work, which postulated the presence of a jet-blown cocoon structure in deep radio continuum maps of the region. Using these newly discovered molecular structures as calorimeters, we estimate the time averaged jet power from these systems, finding (1.1-5.7) × 1036 erg s-1 over 0.12-0.31 Myr for GRS 1758-258 and (0.7-3.5) × 1037 erg s-1 over 0.10-0.26 Myr for 1E 1740.7-2942. Additionally, the spectral line characteristics of the detected emission place these molecular structures in the central molecular zone of our Galaxy, thereby constraining the distances to the black hole X-ray binaries to be 8.0 ± 1.0 kpc. Overall, our analysis solidifies the diagnostic capacity of molecular lines, and highlights how astro-chemistry can both identify jet-ISM interaction zones and probe jet feedback from Galactic X-ray binaries.
Related items
Showing items related by title, author, creator and subject.
-
Shaw, A.W.; Plotkin, Richard ; Miller-Jones, James ; Homan, J.; Gallo, E.; Russell, D.M.; Tomsick, J.A.; Kaaret, P.; Corbel, S.; Espinasse, M.; Bright, J. (2021)Black hole X-ray binaries in the quiescent state (Eddington ratios typically ≲10−5) display softer X-ray spectra (photon indices Γ ∼ 2) compared to higher-luminosity black hole X-ray binaries in the hard state (Γ ∼ 1.7). ...
-
Motch, C.; Pakull, M.; Soria, Roberto; Grisé, F.; Pietrzynski, G. (2014)Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10 39 ergs per second, unusually soft X-ray components (with a typical ...
-
Miller-Jones, James; Wrobel, J.; Sivakoff, G.; Heinke, C.; Miller, R.; Plotkin, R.; Di Stefano, R.; Greene, J.; Ho, L.; Joseph, T.; Kong, A.; Maccarone, T. (2012)The detections of both X-ray and radio emission from the cluster G1 in M31 have provided strong support for existing dynamical evidence for an intermediate-mass black hole (IMBH) of mass (1.8 ± 0.5) × 10^4 M ? at the ...