Show simple item record

dc.contributor.authorBaddeley, Adrian
dc.contributor.authorNair, Gopalan
dc.contributor.authorRakshit, Suman
dc.contributor.authorMcSwiggan, Greg
dc.contributor.authorDavies, Tilman
dc.date.accessioned2023-04-19T12:18:05Z
dc.date.available2023-04-19T12:18:05Z
dc.date.issued2021
dc.identifier.citationBaddeley, A. and Nair, G. and Rakshit, S. and McSwiggan, G. and Davies, T. 2021. Analysing point patterns on networks — A review. Spatial Statistics. 42: pp. 1-35.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/91581
dc.identifier.doi10.1016/j.spasta.2020.100435
dc.description.abstract

We review recent research on statistical methods for analysing spatial patterns of points on a network of lines, such as road accident locations along a road network. Due to geometrical complexities, the analysis of such data is extremely challenging, and we describe several common methodological errors. The intrinsic lack of homogeneity in a network militates against the traditional methods of spatial statistics based on stationary processes. Topics include kernel density estimation, relative risk estimation, parametric and non-parametric modelling of intensity, second-order analysis using the K-function and pair correlation function, and point process model construction. An important message is that the choice of distance metric on the network is pivotal in the theoretical development and in the analysis of real data. Challenges for statistical computation are discussed and open-source software is provided.

dc.languageEnglish
dc.publisherElsevier
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP130102322
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectGeosciences, Multidisciplinary
dc.subjectMathematics, Interdisciplinary Applications
dc.subjectRemote Sensing
dc.subjectStatistics & Probability
dc.subjectGeology
dc.subjectMathematics
dc.subjectDistance metric
dc.subjectKernel density estimation
dc.subjectK-function
dc.subjectNonparametric estimation
dc.subjectPair correlation function
dc.subjectStationary process
dc.subjectKERNEL DENSITY-ESTIMATION
dc.subject2ND-ORDER ANALYSIS
dc.subjectK-FUNCTION
dc.subjectCOMPOSITE LIKELIHOOD
dc.subjectCOMPUTATIONAL METHOD
dc.subjectPARAMETER-ESTIMATION
dc.subjectINTENSITY ESTIMATION
dc.subjectSTATISTICAL-ANALYSIS
dc.subjectREGRESSION-MODELS
dc.subjectLOCAL INDICATORS
dc.titleAnalysing point patterns on networks — A review
dc.typeJournal Article
dcterms.source.volume42
dcterms.source.startPage1
dcterms.source.endPage35
dcterms.source.issn2211-6753
dcterms.source.titleSpatial Statistics
dc.date.updated2023-04-19T12:18:03Z
curtin.departmentCurtin School of Population Health
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Health Sciences
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidRakshit, Suman [0000-0003-0052-128X]
curtin.contributor.orcidBaddeley, Adrian [0000-0001-9499-8382]
curtin.contributor.researcheridBaddeley, Adrian [E-3661-2010]
curtin.identifier.article-numberARTN 100435
curtin.contributor.scopusauthoridRakshit, Suman [57193350564]
curtin.contributor.scopusauthoridBaddeley, Adrian [7101639465]
curtin.repositoryagreementV3


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record