Decomposition pathway of KAlH4 altered by the addition of Al2S3
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Altering the decomposition pathway of potassium alanate, KAlH 4 , with aluminium sulfide, Al 2 S 3 , presents a new opportunity to release all of the hydrogen, increase the volumetric hydrogen capacity and avoid complications associated with the formation of KH and molten K. Decomposition of 6KAlH 4 -Al 2 S 3 during heating under dynamic vacuum began at 185 °C, 65 °C lower than for pure KAlH 4 , and released 71% of the theoretical hydrogen content below 300 °C via several unknown compounds. The major hydrogen release event, centred at 276 °C, was associated with two new compounds indexed with monoclinic (a = 10.505, b = 7.492, c = 11.772 Å, β = 122.88°) and hexagonal (a = 10.079, c = 7.429 Å) unit cells, respectively. Unlike the 6NaAlH 4 -Al 2 S 3 system, the 6KAlH 4 -Al 2 S 3 system did not have M 3 AlH 6 (M = alkali metal) as one of the intermediate decomposition products nor were the final products M 2 S and Al observed. Decomposition performed under hydrogen pressure initially followed a similar reaction pathway to that observed during heating under vacuum but resulted in partial melting of the sample between 300 and 350 °C. The measured enthalpy of hydrogen absorption (ΔH abs ) was in the range -44.5 to -51.1 kJ mol -1 H 2 , which is favourable for moderate temperature hydrogen applications. Although, the hydrogen capacity decreases during consecutive H 2 release and uptake cycles, the presence of excess amounts of aluminium allow for further optimisation of hydrogen storage properties.
Related items
Showing items related by title, author, creator and subject.
-
Javadian, P.; Gharibdoust, S.; Li, H.; Sheppard, Drew; Buckley, C.; Jensen, T. (2017)© 2017 American Chemical Society. The hydrogen storage properties of eutectic melting 0.68LiBH 4 -0.32Ca(BH 4 ) 2 (LiCa) as bulk and nanoconfined into a high surface area, S BET = 2421 ± 189 m 2 /g, carbon aerogel ...
-
Wang, L.; Rawal, A.; Quadir, Md Zakaria; Aguey-Zinsou, K. (2017)© 2017 Hydrogen Energy Publications LLC. Aluminium hydride (AlH3) is a promising hydrogen storage material due to its competitive hydrogen storage density and moderate decomposition temperature. However, there is no ...
-
Pitt, Mark; Paskevicius, Mark; Brown, David; Sheppard, Drew; Buckley, Craig (2013)The purpose of this study is to compare the thermal and structural stability of single phase Li2B12H12 with the decomposition process of LiBH4. We have utilized differential thermal analysis/thermogravimetry (DTA/TGA) and ...