Regularity and directional differentiability with respect to parameters of solutions to nonlinear switching systems
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
School
Collection
Abstract
Many physical systems and processes encompass several modes of operation with a different dynamical behavior in each mode. Switching systems provide a suitable mathematical model for such processes. It is well known that the continuous states of switching systems are often non-differentiable with respect to parameters at the switching instants. However, states at these instants are often involved in optimal control of switching systems, resulting in nonsmooth dynamic programming problems. Directional derivative plays an important role in optimization and control theory. In this paper, we explore the directional differentiability of solutions to a class of switching systems with respect to parameters. We present some basic properties for the switching systems, including non-Zenoness, existence and uniqueness of solution, and local Lipschitzean of solution with respect to parameters. On this basis, we assert the directional differentiability of the solution with respect to parameters and give the formula of the directional derivative.
Related items
Showing items related by title, author, creator and subject.
-
Loxton, Ryan Christopher (2010)In this thesis, we develop numerical methods for solving five nonstandard optimal control problems. The main idea of each method is to reformulate the optimal control problem as, or approximate it by, a nonlinear programming ...
-
Xu, Honglei (2009)Switched systems belong to a special class of hybrid systems, which consist of a collection of subsystems described by continuous dynamics together with a switching rule that specifies the switching between the subsystems. ...
-
Chai, Qinqin (2013)In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...