Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Structure, sinterability, chemical stability and conductivity of proton-conducting BaZr0.6M0.2Y0.2O3-[delta] electrolyte membranes: The effect of the M dopant

    Access Status
    Fulltext not available
    Authors
    Liu, Y.
    Ran, R.
    Tade, Moses
    Shao, Zongping
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Liu, Y. and Ran, R. and Tade, M. and Shao, Z. 2014. Structure, sinterability, chemical stability and conductivity of proton-conducting BaZr0.6M0.2Y0.2O3-[delta] electrolyte membranes: The effect of the M dopant. Journal of Membrane Science. 467: pp. 100-108.
    Source Title
    Journal of Membrane Science
    Additional URLs
    http://www.sciencedirect.com/science/article/pii/S0376738814003858
    ISSN
    0376-7388
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/9257
    Collection
    • Curtin Research Publications
    Abstract

    BaZr0.8Y0.2O3 (BZY) may be one of the most promising proton conductors for hydrogen separation membranes and proton-conducting solid oxide fuel cells. Doping strategies have been widely applied to improve the sintering activity and conductivity of BZY ceramics. In this study, the phase structure, sinterability, chemical stability and conductivity of BaZr0.6M0.2Y0.2O3-d (BZMY) compositions with various M cations of Zr4+, Ce4+, Pr3+, Nd3+, Sm3+ and Gd3+ with different ionic radii were comparatively studied. All the rare-earth dopants could improve the sinterability of BZY. As the ionic radii of the dopants decreased, the oxides are more and more stable in the CO2 atmosphere. EIS results indicated that a greater ionic conductivity was achieved for BZMY with a larger M dopant. Among the various composites, BZNY and BZCY showed favorable protonic conductivity at 600 °C in a wet 10% H2–Ar atmosphere, with good sinterability and resistance to CO2 attack. A peak power density of 153 mW cm-2 was achieved at 700 °C with a fuel cell that contained BZCY as an electrolyte and BSCF as a cathode.

    Related items

    Showing items related by title, author, creator and subject.

    • Augmentation of optoelectronic properties via P3HT doping for low temperature processed perovskite solar cell
      Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Wright, M.; Chan, K.; Xu, C.; Uddin, A. (2018)
      © 2017 IEEE. Methyl Ammonium Lead Halide Perovskite solar have shown immense potential to be a 'Game Changer' in the photovoltaic industry. Major barriers to commercialization of Perovskite solar cells are poor device ...
    • Synthesis and characterization of lanthanum silicate oxyapatites co-doped with A (A = Ba, Sr, and Ca) and Fe for solid oxide fuel cells
      Cao, X.; Jiang, San Ping (2014)
      The co-doped lanthanum silicate oxyapatites, La9.5A0.5Si5.5Fe0.5O26.5 (A = Ba, Sr, and Ca), are synthesized by the high-temperature solid state reaction process. The phase formation and structure properties of undoped ...
    • Sinterability and conductivity of barium doped aluminium lanthanum oxyapatite La9.5Ba0.5Si5.5Al0.5O26.5 electrolyte of solid oxide fuel cells
      Cao, X.; Jiang, San Ping (2012)
      Apatite ceramics are interesting alternative solid oxide fuel cells (SOFCs) electrolytes because of their open structure for the transportation of oxide ions and their good chemical stability. This study reports the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.