Chemically and Mechanically Controlled Single-Molecule Switches Using Spiropyrans
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Remarks
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials and Interfaces, copyright © American Chemical Society, after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.9b11044.
Collection
Abstract
Developing molecular circuits that can function as the active components in electrical devices is an ongoing challenge in molecular electronics. It demands mechanical stability of the single-molecule circuit while simultaneously being responsive to external stimuli mimicking the operation of conventional electronic components. Here, we report single-molecule circuits based on spiropyran derivatives that respond electrically to chemical and mechanical stimuli. The merocyanine that results from the protonation/ring-opening of the spiropyran form showed single-molecule diode characteristics, with an average current rectification ratio of 5 at ±1 V, favoring the orientation where the positively charged end of the molecule is attached to the negative terminal of the circuit. Mechanical pulling of a single spiropyran molecule drives a switch to a more conducting merocyanine state. The mechanical switching is enabled by the strong Au-C covalent bonding between the molecule and the electrodes, which allows the tensile force delivered by the STM piezo to break the molecule at its spiropyran C-O bond.
Related items
Showing items related by title, author, creator and subject.
-
Peiris, Chandramalika R; Vogel, Yan B; Le Brun, Anton P; Aragonès, Albert C; Coote, Michelle L; Díez-Pérez, Ismael; Ciampi, Simone ; Darwish, Nadim (2019)Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the ...
-
Peiris, Chandramalika ; Ciampi, Simone ; Dief, Essam ; Zhang, Jinyang ; Canfield, P.J.; Le Brun, A.P.; Kosov, D.S.; Reimers, J.R.; Darwish, Nadim (2020)We report the synthesis of covalently linked self-assembled monolayers (SAMs) on silicon surfaces, using mild conditions, in a way that is compatible with silicon-electronics fabrication technologies. In molecular ...
-
Aragones, A.; Darwish, Nadim; Ciampi, Simone; Sanz, F.; Gooding, J.; Diez-Perez, I. (2017)The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule ...